On the Cauchy problem for reaction-diffusion equations

Author:
Xuefeng Wang

Journal:
Trans. Amer. Math. Soc. **337** (1993), 549-590

MSC:
Primary 35K57; Secondary 35B40

DOI:
https://doi.org/10.1090/S0002-9947-1993-1153016-5

MathSciNet review:
1153016

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The simplest model of the Cauchy problem considered in this paper is the following

**[1]**D. G. Aronson and H. F. Weinberger,*Multidimensional nonlinear diffusion arising in population genetics*, Adv. Math.**30**(1978), 33-76. MR**511740 (80a:35013)****[2]**T. Aubin,*Nonlinear analysis on manifolds. Monge-Ampére equations*, Springer-Verlag, New York, Heidelberg, and Berlin, 1982. MR**681859 (85j:58002)****[3]**C. Bandle and H.A. Levine,*On the existence and nonexistence of global solutions of reactiondiffusion equations in sectorial domains*, Trans. Amer. Math. Soc.**316**(1989). MR**937878 (90c:35118)****[4]**-,*Fujita type results for convective like reaction diffusion equations in exterior domains*, Z. Angew. Math. Phys.**40**(1989), 665-676. MR**1013561 (90m:35093)****[5]**L. Caffarelli, B. Gidas, and J. Spruck,*Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth*, Comm. Pure Appl. Math.**42**(1989), 271-297. MR**982351 (90c:35075)****[6]**R. Fowler,*The solution of Emden's and similar differential equations*, Monthly Notices Roy. Astronom. Soc.**91**(1930), 63-91.**[7]**-,*Further studies of Emden's and similar differential equations*, Quarterly J. Math. Oxford Ser.**2**(1931), 259-288.**[8]**A. Friedman,*A strong maximum principle for weakly subparabolic functions*, Pacific J. Math.**11**(1961), 175-184. MR**0123096 (23:A427)****[9]**-,*Partial differential equations of parabolic type*, Prentice-Hall, Englewood Cliffs, N. J., 1964. MR**0181836 (31:6062)****[10]**A. Friedman and B. Mcleod,*Blow-up of positive solutions of semilinear heat equations*, Indiana Univ. Math. J.**34**(1985), 425-447. MR**783924 (86j:35089)****[11]**H. Fujita,*On the blowing up of solutions of the Cauchy problem for*, J. Fac. Sci. Tokyo Sect. IA Math.**13**(1966), 109-124. MR**0214914 (35:5761)****[12]**-,*On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations*, Proc. Sympos. Pure Math. vol. 18, part I, Amer. Math. Soc., Providence, R. I., 1968, pp. 138-161.**[13]**B. Gidas, W.-M. Ni, and L. Nirenberg,*Symmetry and related properties via the maximum principle*, Comm. Math. Phys.**68**(1979), 209-243. MR**544879 (80h:35043)****[14]**-,*Symmetry of positive solutions of nonlinear elliptic equations in*, Advances in Math. Suppl. Stud. 7A, Math. Anal. Appl., part A, 1981, pp. 369-402.**[15]**B. Gidas and J. Spruck,*Global and local behavior of positive solutions of nonlinear elliptic equations*, Comm. Pure Appl. Math.**23**(1981), 525-598. MR**615628 (83f:35045)****[16]**D. Gilbarg and N. Trudinger,*Elliptic partial differential equations of second order*, Springer-Verlag, New York, Heidelberg, and Berlin, 1983. MR**737190 (86c:35035)****[17]**J. Hale,*Theory of functional differential equations*, Springer-Verlag, New York, Heidelberg, and Berlin, 1977. MR**0508721 (58:22904)****[18]**A. Haraux and F. B. Weissler,*Non-uniqueness for a semilinear initial value problem*, Indiana Univ. Math. J.**31**(1982), 167-189. MR**648169 (83h:35063)****[19]**K. Hayakawa,*On nonexistence of global solutions of some semilinear parabolic equations*, Proc. Japan Acad.**49**(1973), 503-525. MR**0338569 (49:3333)****[20]**D. Joseph and T. Lundgren,*Quasilinear Dirichlet problems driven by positive sources*, Arch. Rational Mech. Anal.**49**(1973), 241-269. MR**0340701 (49:5452)****[21]**S. Kaplan,*On the growth of solutions of quasilinear parabolic equations*, Comm. Pure Appl. Math.**16**(1963), 305-333. MR**0160044 (28:3258)****[22]**K. Kobayashi, T. Siaro, and H. Tanaka,*On the blowing up problem for semilinear heat equations*, J. Math. Soc. Japan**29**(1977), 407-424. MR**0450783 (56:9076)****[23]**O. Ladyzenskaja, U. Solonikov, and N. Uralceva,*Linear and quasilinear equations of parabolic type*, Amer. Math. Soc., Providence, R. I., 1968.**[24]**T.-Y. Lee and W.-M. Ni,*Global existence, large time behavior and life span of solutions of semilinear parabolic Cauchy problem*, Trans. Amer. Math. Soc.**333**(1992), 365-371. MR**1057781 (92k:35134)****[25]**H. A. Levine,*The long time behavior of solutions of reaction-diffusion equations in unbounded domains*:*a survey*, Proc. 10th Dundee Conf. Theory of Ordinary and Partial Differential Equations, 1988. MR**1031726 (91c:35069)****[26]**-,*The role of critical exponents in blow up theorems*, SIAM Rev.**32**(1990), 262-288. MR**1056055 (91j:35135)****[27]**W.-M. Ni,*Uniqueness, nonuniqueness and related questions of nonlinear elliptic and parabolic equations*, Proc. Sympos. Pure Math., vol. 45, part 2, Amer. Math. Soc., Providence, R. I., 1986, pp. 229-241. MR**843611 (87j:35148)****[28]**-,*On the elliptic equation*,*its generalizations, and applications in geometry*, Indiana Univ. Math. J.**31**(1982), 493-529. MR**662915 (84e:35049)****[29]**W.-M. Ni and J. Serrin,*Topics in partial differential equations*, Lecture Notes, Univ. of Minnesota, 1987-1988.**[30]**W.-M. Ni and S. Yotsutani,*Semilinear elliptic equations of Matukuma-type and related topics*, Japan J. Appl. Math.**5**(1988), 1-32. MR**924742 (89b:35043)****[31]**L. A. Peletier, D. Terman, and F. B. Weissler,*On the equation*, Arch. Rational Mech. Anal.**94**(1986), 83-99.**[32]**M. H. Protter and H. F. Weinberger,*Maximum principles in differential equations*, Prentice-Hall, Englewood Cliffs, N. J., 1967. MR**0219861 (36:2935)****[33]**D. H. Sattinger,*Monotone methods in nonlinear elliptic and parabolic boundary value problems*, Indiana Univ. Math. J.**21**(1972), 979-1000. MR**0299921 (45:8969)****[34]**F. B. Weissler,*Local existence and nonexistence for semilinear parabolic equations in*, Indiana Univ. Math. J.**29**(1980), 79-101. MR**554819 (81c:35072)****[35]**-,*Existence and non-existence of global solutions for a semilinear heat equation*, Israel J. Math.**38**(1981), 29-40. MR**599472 (82g:35059)****[36]**Q.-X. Ye and Z-Y. Li,*An introduction to reaction diffusion equations*, Science Press, Beijing (in Chinese). MR**1113267 (92i:35067)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35K57,
35B40

Retrieve articles in all journals with MSC: 35K57, 35B40

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1993-1153016-5

Article copyright:
© Copyright 1993
American Mathematical Society