Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

A structural criterion for the existence of infinite central $ \Lambda(p)$ sets


Authors: Kathryn E. Hare and David C. Wilson
Journal: Trans. Amer. Math. Soc. 337 (1993), 907-925
MSC: Primary 43A46; Secondary 43A80
MathSciNet review: 1157613
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We classify the compact, connected groups which have infinite central $ \Lambda (p)$ sets, arithmetically characterize central $ \Lambda (p)$ sets on certain product groups, and give examples of $ \Lambda (p)$ sets which are non-Sidon and have unbounded degree. These sets are intimately connected with Figà-Talamanca and Rider's examples of Sidon sets, and stem from the existence of families of tensor product representations of almost simple Lie groups whose decompositions into irreducibles are rank-independent.


References [Enhancements On Off] (What's this?)

  • [1] George Benke, On the hypergroup structure of central Λ(𝑝) sets, Pacific J. Math. 50 (1974), 19–27. MR 0352881
  • [2] Aline Bonami, Étude des coefficients de Fourier des fonctions de 𝐿^{𝑝}(𝐺), Ann. Inst. Fourier (Grenoble) 20 (1970), no. fasc. 2, 335–402 (1971) (French, with English summary). MR 0283496
  • [3] N. Bourbaki, Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées, Actualités Scientifiques et Industrielles, No. 1364. Hermann, Paris, 1975 (French). MR 0453824
  • [4] D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494–1504. MR 0208647
  • [5] Donald I. Cartwright and John R. McMullen, A structural criterion for the existence of infinite Sidon sets, Pacific J. Math. 96 (1981), no. 2, 301–317. MR 637974
  • [6] Carlo Cecchini, Lacunary Fourier series on compact Lie groups, J. Functional Analysis 11 (1972), 191–203. MR 0374821
  • [7] A. H. Dooley, Norms of characters and lacunarity for compact Lie groups, J. Funct. Anal. 32 (1979), no. 2, 254–267. MR 534677, 10.1016/0022-1236(79)90057-0
  • [8] Alessandro Figà-Talamanca and Daniel Rider, A theorem of Littlewood and lacunary series for compact groups, Pacific J. Math. 16 (1966), 505–514. MR 0206626
  • [9] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
  • [10] Kathryn E. Hare, 𝐿^{𝑝}-improving measures on compact nonabelian groups, J. Austral. Math. Soc. Ser. A 46 (1989), no. 3, 402–414. MR 987558
  • [11] James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. MR 0323842
  • [12] M. F. Hutchinson, Non-tall compact groups admit infinite Sidon sets, J. Austral. Math. Soc. Ser. A 23 (1977), no. 4, 467–475. MR 0477612
  • [13] Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. MR 855239
  • [14] Jorge M. López and Kenneth A. Ross, Sidon sets, Marcel Dekker, Inc., New York, 1975. Lecture Notes in Pure and Applied Mathematics, Vol. 13. MR 0440298
  • [15] John F. Price, Lie groups and compact groups, Cambridge University Press, Cambridge-New York-Melbourne, 1977. London Mathematical Society Lecture Note Series, No. 25. MR 0450449
  • [16] Daniel Rider, Central lacunary sets, Monatsh. Math. 76 (1972), 328–338. MR 0367559
  • [17] Jacques Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Springer-Verlag, Berlin-New York, 1967 (German). MR 0218489
  • [18] David C. Wilson, A general criterion for the existence of infinite Sidon sets, J. Austral. Math. Soc. Ser. A 45 (1988), no. 1, 11–29. MR 940520

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A46, 43A80

Retrieve articles in all journals with MSC: 43A46, 43A80


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1993-1157613-2
Keywords: $ \Lambda (p)$ set, lacunary set, representations of compact groups
Article copyright: © Copyright 1993 American Mathematical Society