Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Imprimitive Gaussian sums and theta functions over a number field

Author: Jacob Nemchenok
Journal: Trans. Amer. Math. Soc. 338 (1993), 465-478
MSC: Primary 11L05; Secondary 11F11, 11F12
MathSciNet review: 1041052
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We obtain a reduction formula for an imprimitive Gaussian sum with a numerical character in an algebraic number field, i.e. a formula that expresses that sum as a product of several elementary factors times a primitive, proper, normed Gaussian sum (formulae (16) and (19)). We also introduce Gaussian sums with Hecke characters and derive a similar reduction formula for them. The derivation is based on an inversion formula for a multivariable theta function associated with the number field, twisted with the numerical character.

References [Enhancements On Off] (What's this?)

  • [1] H. Hasse, Vorlezungen über Zahlentheorie, zweite auf., Springer-Verlag, Berlin, 1964.
  • [2] -, Allgemeine Theorie der Gaussche Summen in algebraischen Zahlkörpern, Mathematische Abhandlungen, Vol. 3, De Gruyter, Berlin and New York, 1975, pp. 15-39.
  • [3] E. Hecke, Eine neue Art von Zetafunctionen und ihre Beziehungen zur Verteilung der Primzahlen. II, Math. Z. 6 (1920), 11-51. MR 1544392
  • [4] -, Vorlezungen über die Theorie der algebraischen Zahlen, Akademische Verlag, 1923; English transl., Lectures on the theory of algebraic numbers, Springer-Verlag, 1981.
  • [5] H. Joris, On the evaluation of Gaussian sums for non-primitive Dirichlet characters, Enseign. Math. 23 (1977), 13-18. MR 0441888 (56:279)
  • [6] E. Lamprecht, Allgemeine Theorie der Gausssche Summen in endlichen kommutativen Ringen, Math. Nachr. 9 (1953), 149-196. MR 0054578 (14:942c)
  • [7] D. Mumford, Tata lectures on theta. I, Birkhäuser, Boston, Mass., 1983. MR 688651 (85h:14026)
  • [8] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, PWN, Warsaw, 1974. MR 0347767 (50:268)
  • [9] R. Odoni, On Gauss sums $ (\bmod {p^n})$, $ n \geq 2$, Bull. London Math. Soc. 5 (1973), 325-327. MR 0327678 (48:6020)
  • [10] H. Stark, Modular forms and related objects, Number Theory (Montreal, Que., 1985), CMS Conf. Proc., vol. 7, Amer. Math. Soc., Providence, R.I., 1987, pp. 421-455. MR 894333 (88j:11029)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 11L05, 11F11, 11F12

Retrieve articles in all journals with MSC: 11L05, 11F11, 11F12

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society