Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Mixing properties of a class of Bernoulli-processes

Author: Doris Fiebig
Journal: Trans. Amer. Math. Soc. 338 (1993), 479-493
MSC: Primary 60G10; Secondary 28D05
MathSciNet review: 1102220
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove that stationary very weak Bernoulli processes with rate $ O(1/n)\;({\text{VWB}}\,O(1/n))$ are strictly very weak Bernoulli with rate $ O(1/n)$. Furthermore we discuss the relation between $ {\text{VWB}}\;O(1/n)$ and the classical mixing properties for countable state processes. In particular, we show that $ {\text{VWB}}\,O(1/n)$ implies $ \phi $-mixing.

References [Enhancements On Off] (What's this?)

  • [B1] R. C. Bradley, On a very weak Bernoulli condition, Stochastic 13 (1984), 61-81. MR 752477 (86a:28018)
  • [B2] -, On the $ \phi $-mixing condition for stationary random sequences, Duke Math. J. 47 (1980), 421-433. MR 575905 (82a:60049)
  • [B3] -, Basic properties of strong mixing conditions: Dependence in Probability and Statistics (E. Eberlein and M. S. Taqqu, eds.), Birkhäuser, 1986, pp. 165-192. MR 899990 (88g:60039)
  • [D.D.P] H. Dehling, M. Denker, and W. Philipp, Versik processes and very weak Bernoulli processes with summable rates are independent, Proc. Amer. Math. Soc. 91 (1984), 618-623. MR 746101 (85i:28005)
  • [E] E. Eberlein, Strong approximation of very weak Bernoulli processes, Z. Wahrsch. Verw. Gebiete 62 (1983), 17-37. MR 684206 (85c:60039)
  • [F] D. Fiebig, Über very weak Bernoulli Prozesse mit schnellen Raten, Dissertation, Göttingen, 1988.
  • [K.O'B] H. Kesten and G. L. O'Brien, Examples of mixing sequences, Duke Math. J. 43 (1976), 405-415. MR 0410874 (53:14617)
  • [R] M. Rosenblatt, Markov processes, structure and asymptotic behavior, Springer-Verlag, Berlin, 1971. MR 0329037 (48:7379)
  • [S.] W. Strittmatter, Measures of dependence for processes in metric spaces, Stochastics Stochastics Rep. 27 (1989), 33-50. MR 1008226 (91a:60097)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60G10, 28D05

Retrieve articles in all journals with MSC: 60G10, 28D05

Additional Information

Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society