Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Local integrability of Mizohata structures


Authors: Jorge Hounie and Pedro Malagutti
Journal: Trans. Amer. Math. Soc. 338 (1993), 337-362
MSC: Primary 35N15; Secondary 32F20, 32F40, 35F05
DOI: https://doi.org/10.1090/S0002-9947-1993-1106189-4
MathSciNet review: 1106189
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this work we study the local integrability of strongly pseudoconvex Mizohata structures of rank $ n > 2$ (and co-rank $ 1$). These structures are locally generated in an appropriate coordinate system $ ({t_1}, \ldots ,{t_n},x)$ by flat perturbations of Mizohata vector fields $ {M_j} = \frac{\partial } {{\partial {t_j}}} - i{t_j}\frac{\partial } {{\partial x}}$, $ j = 1, \ldots ,n$. For this, we first prove the global integrability of small perturbations of the structure generated by $ \frac{\partial } {{\partial \bar z}} + {\sigma _1}\frac{\partial } {{\partial z}}$, $ \frac{\partial } {{\partial {\theta _{n - 1}}}} + {\sigma _j}\frac{\partial } {{\partial z}}$, $ j = 2, \ldots ,n$, defined over a manifold $ {\mathbf{C}} \times S$, where $ S$ is simply connected.


References [Enhancements On Off] (What's this?)

  • [1] T. Akahori, A new approach to the local embedding theorem of $ CR$-strutures, Mem. Amer. Math. Soc. No. 366 (1987).
  • [2] Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859
  • [3] Paulo D. Cordaro, Sistemas de campos vetoriais complexos, VIII Escola Latino-Americana de Matemática, IMPA, 1986.
  • [4] P. Cordaro and J. Hounie, Local solvability in 𝐶^{∞}_{𝑐} of over-determined systems of vector fields, J. Funct. Anal. 87 (1989), no. 2, 231–249. MR 1026852, https://doi.org/10.1016/0022-1236(89)90009-8
  • [5] Paulo Cordaro and Jorge Hounie, On local solvability of underdetermined systems of vector fields, Amer. J. Math. 112 (1990), no. 2, 243–270. MR 1047299, https://doi.org/10.2307/2374715
  • [6] L. Hörmander, Implicit function theorems, Lectures at Stanford Univ., 1977.
  • [7] J. Hounie, Nonexistence of homotopy formula for a Mizohata complex in $ {{\mathbf{R}}^3}$, unpublished preprint.
  • [8] M. Kuranishi, Strongly pseudo convex $ CR$ structures over small balls, Ann. of Math. I: 115 (1982), 451-500, II: 116 (1982), 1-64, III: 116 (1982), 249-330.
  • [9] Jürgen Moser, A new technique for the construction of solutions of nonlinear differential equations, Proc. Nat. Acad. Sci. U.S.A. 47 (1961), 1824–1831. MR 0132859
  • [10] A. Nagel and J. Rosay, Nonexistence of homotopy formula for $ (0,1)$ forms on hypersurfaces of $ {{\mathbf{C}}^3}$, Duke Math. J. 53 (1989), 823-827.
  • [11] Louis Nirenberg, Lectures on linear partial differential equations, American Mathematical Society, Providence, R.I., 1973. Expository Lectures from the CBMS Regional Conference held at the Texas Technological University, Lubbock, Tex., May 22–26, 1972; Conference Board of the Mathematical Sciences Regional Conference Series in Mathematics, No. 17. MR 0450755
  • [12] -, On a question of Hans Lewy, Russian Math. Surveys 29 (1974), 251-262.
  • [13] A. Newlander and L. Nirenberg, Complex analytic coordinates in almost complex manifolds, Ann. of Math. (2) 65 (1957), 391–404. MR 0088770, https://doi.org/10.2307/1970051
  • [14] R. T. Seeley, Extension of 𝐶^{∞} functions defined in a half space, Proc. Amer. Math. Soc. 15 (1964), 625–626. MR 0165392, https://doi.org/10.1090/S0002-9939-1964-0165392-8
  • [15] F. Trèves, Approximation and representation of functions and distributions annihilated by a system of complex vector fields, École Polytechnique, Centre de Mathématiques, Palaiseau, 1981. MR 716137
  • [16] François Trèves, On the local solvability and the local integrability of systems of vector fields, Acta Math. 151 (1983), no. 1-2, 1–38. MR 716369, https://doi.org/10.1007/BF02393203
  • [17] -, Hypoanalytic strutures, Princeton Univ. Press, Princeton, N.J., 1991.
  • [18] Frank W. Warner, Foundations of differentiable manifolds and Lie groups, Scott, Foresman and Co., Glenview, Ill.-London, 1971. MR 0295244
  • [19] S. Webster, A new proof of the Newlander-Nirenberg theorem, Univ. of Minnesota Math. Rep. 86-165.
  • [20] -, On the proof of Kuranishi's embedding theorem, Forschungsinstitut fuer Mathematik Eth. Zuerich, 1988.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35N15, 32F20, 32F40, 35F05

Retrieve articles in all journals with MSC: 35N15, 32F20, 32F40, 35F05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1106189-4
Keywords: overdetermined systems, localintegrability, Mizohata structures, differential complex
Article copyright: © Copyright 1993 American Mathematical Society