Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On complete manifolds of nonnegative $ k$th-Ricci curvature


Author: Zhong Min Shen
Journal: Trans. Amer. Math. Soc. 338 (1993), 289-310
MSC: Primary 53C21; Secondary 31C12, 57R70
DOI: https://doi.org/10.1090/S0002-9947-1993-1112548-6
MathSciNet review: 1112548
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we establish some vanishing and finiteness theorems for the topological type of complete open riemannian manifolds under certain positivity conditions for curvature. Key tools are comparison techniques and Morse Theory of Busemann and distance functions.


References [Enhancements On Off] (What's this?)

  • [A] U. Abresch, Lower curvature bounds, Toponogov's theorem, and bounded topology. II, Ann. Sci. École Norm. Sup. 20 (1987), 475-502. MR 925724 (89d:53080)
  • [An] M. Anderson, On the topology of complete manifolds of nonnegative Ricci curvature, Topology 29 (1990), 41-55. MR 1046624 (91b:53041)
  • [AKL] M. Anderson, P. Kronheimer and C. LeBrun, Complete Ricci-flat Kähler manifolds of infinite topological type, preprint. MR 1024931 (91a:53073)
  • [AG] U. Abresch and D. Gromoll, On complete manifolds with nonnegative Ricci curvature, J. Amer. Math. Soc. 3 (1990), 355-374. MR 1030656 (91a:53071)
  • [BY] S. Bochner and K. Yano, Curvature and Betti numbers, Ann. of Math. Studies, no. 32, Princeton Univ. Press, Princeton, N.J., 1953. MR 0062505 (15:989f)
  • [C] J. Cheeger, Critical points of distance functions and applications to geometry, preprint 1990. MR 1168042 (94a:53075)
  • [CE] J. Cheeger and D. G. Ebin, Comparison theorems in Riemannian geometry, American Elsevier, New York, 1975. MR 0458335 (56:16538)
  • [CG1] J. Cheeger and D. Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. (2) 96 (1974), 413-443. MR 0309010 (46:8121)
  • [CG2] -, The splitting theorems for manifolds of nonnegative Ricci curvature, J. Differential Geom. 6 (1971), 119-128. MR 0303460 (46:2597)
  • [CGT] J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete riemannian manifolds, J. Differential Geom. 17 (1982), 15-53. MR 658471 (84b:58109)
  • [G1] M. Gromov, Curvature, diameter and Betti numbers, Comment. Math. Helv. 56 (1981), 179-195. MR 630949 (82k:53062)
  • [G2] -, Manifolds of negative curvature, J. Differential Geom. 13 (1978), 223-230. MR 540941 (80h:53040)
  • [GM] D. Gromoll and W. T. Meyer, Complete open manifolds of positive curvature, Ann. of Math. (2) 96 (1969), 75-90. MR 0247590 (40:854)
  • [GP] K. Grove and P. Petersen V, On the excess of metric spaces and manifolds, preprint.
  • [GS] K. Grove and K. Shiohama, A generalized sphere theorem, Ann. of Math. (2) 106 (1977), 201-211. MR 0500705 (58:18268)
  • [GW1] R. E. Greene and H. Wu, $ {C^\infty }$ approximation of convex, subharmonic and plurisubharmonic functions, Ann. Sci. École. Norm. Sup. 12 (1979), 47-84. MR 532376 (80m:53055)
  • [GW2] -, Integrals of subharmonic function on manifolds of nonnegative curvature, Invent. Math. 27 (1974), 265-298. MR 0382723 (52:3605)
  • [LT] P. Li and L. F. Tam, Positive harmonic functions on complete manifolds with nonnegative curvature outside a compact set, Ann. of Math. (2) 125 (1987), 171-207. MR 873381 (88m:58039)
  • [M1] J. Milnor, Lectures on the $ h$-cobordism theorem, Princeton Univ. Press, Princeton, N.J., 1965. MR 0190942 (32:8352)
  • [M2] -, Morse theory, Princeton Univ. Press, Princeton, N.J., 1975.
  • [S1] Z. Shen, Finiteness and vanishing theorems for complete open riemannian manifolds, Bull. Amer. Math. Soc. (N.S.) 21 (1989), 241-244. MR 998628 (90c:53111)
  • [S2] -, Finite topological type and vanishing theorems for riemannian manifolds, Ph.D. thesis, SUNY at Stony Brook, 1990.
  • [SHY] R. Schoen and S. T. Yau, Complete three dimensional manifolds with positive Ricci curvature and scalar curvature, Seminar on Differential Geometry (S. T. Yau, ed.), Ann. of Math. Studies, no. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 209-228. MR 645740 (83k:53060)
  • [SY1] J. Sha and D. Yang, Examples of manifolds of positive Ricci curvature, J. Differential Geom. 29 (1989), 95-103. MR 978078 (90c:53110)
  • [SY2] -, Positive Ricci curvature on the connected sums of $ {S^n} \times {S^m}$, J. Differential Geom. 33 (1991), 127-138. MR 1085137 (92f:53048)
  • [SH] J. Sha, $ p$-convexity of manifolds with boundary, Ph.D. Dissertation, SUNY at Stony Brook, 1986.
  • [SW] Z. Shen and G. Wei, Volume growth and finite topological type, MSRI preprint, 1990. MR 1216645 (94e:53036)
  • [W1] H. Wu, An elementary method in the study of nonnegative curvature, Acta Math. 142 (1979), 57-78. MR 512212 (80c:53054)
  • [W2] -, Manifolds of partially positive curvature, Indiana Univ. Math. J. 36 (1987), 525-548. MR 905609 (88k:53068)
  • [Y] S. T. Yau, Some function-theoretic properties of complete riemannian manifold and their applications to geometry, Indiana Univ. Math. J. 25 (1976), 659-670. MR 0417452 (54:5502)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 53C21, 31C12, 57R70

Retrieve articles in all journals with MSC: 53C21, 31C12, 57R70


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1112548-6
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society