On complete manifolds of nonnegative th-Ricci curvature

Author:
Zhong Min Shen

Journal:
Trans. Amer. Math. Soc. **338** (1993), 289-310

MSC:
Primary 53C21; Secondary 31C12, 57R70

MathSciNet review:
1112548

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we establish some vanishing and finiteness theorems for the topological type of complete open riemannian manifolds under certain positivity conditions for curvature. Key tools are comparison techniques and Morse Theory of Busemann and distance functions.

**[A]**U. Abresch,*Lower curvature bounds, Toponogov’s theorem, and bounded topology. II*, Ann. Sci. École Norm. Sup. (4)**20**(1987), no. 3, 475–502. MR**925724****[An]**Michael T. Anderson,*On the topology of complete manifolds of nonnegative Ricci curvature*, Topology**29**(1990), no. 1, 41–55. MR**1046624**, 10.1016/0040-9383(90)90024-E**[AKL]**Michael T. Anderson, Peter B. Kronheimer, and Claude LeBrun,*Complete Ricci-flat Kähler manifolds of infinite topological type*, Comm. Math. Phys.**125**(1989), no. 4, 637–642. MR**1024931****[AG]**Uwe Abresch and Detlef Gromoll,*On complete manifolds with nonnegative Ricci curvature*, J. Amer. Math. Soc.**3**(1990), no. 2, 355–374. MR**1030656**, 10.1090/S0894-0347-1990-1030656-6**[BY]**K. Yano and S. Bochner,*Curvature and Betti numbers*, Annals of Mathematics Studies, No. 32, Princeton University Press, Princeton, N. J., 1953. MR**0062505****[C]**Jeff Cheeger,*Critical points of distance functions and applications to geometry*, Geometric topology: recent developments (Montecatini Terme, 1990) Lecture Notes in Math., vol. 1504, Springer, Berlin, 1991, pp. 1–38. MR**1168042**, 10.1007/BFb0094288**[CE]**Jeff Cheeger and David G. Ebin,*Comparison theorems in Riemannian geometry*, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. North-Holland Mathematical Library, Vol. 9. MR**0458335****[CG1]**Jeff Cheeger and Detlef Gromoll,*On the structure of complete manifolds of nonnegative curvature*, Ann. of Math. (2)**96**(1972), 413–443. MR**0309010****[CG2]**Jeff Cheeger and Detlef Gromoll,*The splitting theorem for manifolds of nonnegative Ricci curvature*, J. Differential Geometry**6**(1971/72), 119–128. MR**0303460****[CGT]**Jeff Cheeger, Mikhail Gromov, and Michael Taylor,*Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds*, J. Differential Geom.**17**(1982), no. 1, 15–53. MR**658471****[G1]**Michael Gromov,*Curvature, diameter and Betti numbers*, Comment. Math. Helv.**56**(1981), no. 2, 179–195. MR**630949**, 10.1007/BF02566208**[G2]**M. Gromov,*Manifolds of negative curvature*, J. Differential Geom.**13**(1978), no. 2, 223–230. MR**540941****[GM]**Detlef Gromoll and Wolfgang Meyer,*On complete open manifolds of positive curvature*, Ann. of Math. (2)**90**(1969), 75–90. MR**0247590****[GP]**K. Grove and P. Petersen V,*On the excess of metric spaces and manifolds*, preprint.**[GS]**Karsten Grove and Katsuhiro Shiohama,*A generalized sphere theorem*, Ann. of Math. (2)**106**(1977), no. 2, 201–211. MR**0500705****[GW1]**R. E. Greene and H. Wu,*𝐶^{∞} approximations of convex, subharmonic, and plurisubharmonic functions*, Ann. Sci. École Norm. Sup. (4)**12**(1979), no. 1, 47–84. MR**532376****[GW2]**R. E. Greene and H. Wu,*Integrals of subharmonic functions on manifolds of nonnegative curvature*, Invent. Math.**27**(1974), 265–298. MR**0382723****[LT]**Peter Li and Luen-Fai Tam,*Positive harmonic functions on complete manifolds with nonnegative curvature outside a compact set*, Ann. of Math. (2)**125**(1987), no. 1, 171–207. MR**873381**, 10.2307/1971292**[M1]**John Milnor,*Lectures on the ℎ-cobordism theorem*, Notes by L. Siebenmann and J. Sondow, Princeton University Press, Princeton, N.J., 1965. MR**0190942****[M2]**-,*Morse theory*, Princeton Univ. Press, Princeton, N.J., 1975.**[S1]**Zhong Min Shen,*Finiteness and vanishing theorems for complete open Riemannian manifolds*, Bull. Amer. Math. Soc. (N.S.)**21**(1989), no. 2, 241–244. MR**998628**, 10.1090/S0273-0979-1989-15817-5**[S2]**-,*Finite topological type and vanishing theorems for riemannian manifolds*, Ph.D. thesis, SUNY at Stony Brook, 1990.**[SHY]**Richard Schoen and Shing Tung Yau,*Complete three-dimensional manifolds with positive Ricci curvature and scalar curvature*, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 209–228. MR**645740****[SY1]**Ji-Ping Sha and DaGang Yang,*Examples of manifolds of positive Ricci curvature*, J. Differential Geom.**29**(1989), no. 1, 95–103. MR**978078****[SY2]**Ji-Ping Sha and DaGang Yang,*Positive Ricci curvature on the connected sums of 𝑆ⁿ×𝑆^{𝑚}*, J. Differential Geom.**33**(1991), no. 1, 127–137. MR**1085137****[SH]**J. Sha, -*convexity of manifolds with boundary*, Ph.D. Dissertation, SUNY at Stony Brook, 1986.**[SW]**Zhong Min Shen and Guofang Wei,*Volume growth and finite topological type*, Differential geometry: Riemannian geometry (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., vol. 54, Amer. Math. Soc., Providence, RI, 1993, pp. 539–549. MR**1216645****[W1]**H. Wu,*An elementary method in the study of nonnegative curvature*, Acta Math.**142**(1979), no. 1-2, 57–78. MR**512212**, 10.1007/BF02395057**[W2]**H. Wu,*Manifolds of partially positive curvature*, Indiana Univ. Math. J.**36**(1987), no. 3, 525–548. MR**905609**, 10.1512/iumj.1987.36.36029**[Y]**Shing Tung Yau,*Some function-theoretic properties of complete Riemannian manifold and their applications to geometry*, Indiana Univ. Math. J.**25**(1976), no. 7, 659–670. MR**0417452**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
53C21,
31C12,
57R70

Retrieve articles in all journals with MSC: 53C21, 31C12, 57R70

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1993-1112548-6

Article copyright:
© Copyright 1993
American Mathematical Society