Classification of singularities for blowing up solutions in higher dimensions

Author:
J. J. L. Velázquez

Journal:
Trans. Amer. Math. Soc. **338** (1993), 441-464

MSC:
Primary 35K60; Secondary 35A20, 35B05

DOI:
https://doi.org/10.1090/S0002-9947-1993-1134760-2

MathSciNet review:
1134760

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the Cauchy problem (P)

In this paper we shall assume that blows up at , , and derive the possible asymptotic behaviours of as , under general assumptions on the blow-up rate.

**[AW]**D. G. Aronson and H. F. Weinberger,*Multidimensional nonlinear diffusion arising in population genetics*, Adv. Math.**30**(1978), 33-76. MR**511740 (80a:35013)****[BBE]**J. Bebernes, A. Bressan, and D. Eberly,*A description of blow-up for the solid fuel ignition model*, Indiana Univ. Math. J.**36**(1987), 131-136. MR**891776 (88g:35029)****[BB]**J. Bebernes and S. Bricher,*Final time blow-up profiles for semilinear parabolic equations via center manifold theory*(to appear). MR**1166561 (93h:35091)****[BE]**J. Bebernes and D. Eberly,*Mathematical problems from combustion theory*, Applied Mathematical Sciences, vol. 83, Springer-Verlag, Berlin, Heidelberg, and New York, 1989. MR**1012946 (91d:35165)****[B]**A. Bressan,*On the asymptotic shape of blow-up*, Indiana Univ. Math. J.**39**(1990), 947-960. MR**1087180 (91i:35030)****[CM]**X. Y. Chen and H. Matano,*Convergence, asymptotic periodicity and finite point blow-up in one-dimensional semilinear heat equations*, J. Differential Equations**78**(1989), 160-190. MR**986159 (90e:35018)****[FK]**S. Filippas and R. V. Kohn,*Refined asymptotics for the blow-up of*, Comm. Pure Appl. Math.**45**(1992), 821-869. MR**1164066 (93g:35066)****[FL]**S. Filippas and W. Liu,*On the blow-up of multidimensional semilinear heat equations*, Ann. Inst. H. Poincaré (to appear).**[FM]**A. Friedman and J. B. McLeod,*Blow-up of positive solutions of semilinear heat equations*, Indiana Univ. Math. J.**34**(1985), 425-447. MR**783924 (86j:35089)****[Fu]**H. Fujita,*On the blowing-up of solutions of the Cauchy problem for*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**13**(1966), 109-124. MR**0214914 (35:5761)****[GK1]**Y. Giga and R. V. Kohn,*Asymptotically self-similar blow-up of semilinear heat equations*, Comm. Pure Appl. Math.**38**(1985), 297-319. MR**784476 (86k:35065)****[GK2]**-,*Characterizing blow-up using similarity variables*, Indiana Univ. Math. J.**36**(1987), 1-40. MR**876989 (88c:35021)****[GK3]**-,*Nondegeneracy of blow-up for semilinear heat equations*, Comm. Pure Appl. Math.**42**(1989), 845-884. MR**1003437 (90k:35034)****[GP]**V. A. Galaktionov and S. A. Posashkov,*Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations*, Differentsial'nge Uravneniya**22**(1986), 1165-1173. MR**853803 (87j:35037)****[HV1]**M. A. Herrero and J. J. L. Velázquez,*Blow up behaviour of one dimensional semilinear parabolic equations*, Ann. Inst. H. Poincaré (to appear).**[HV2]**-,*Flat blow-up in one-dimensional semilinear heat equations*, Differential Integral Equations**5**(1992), 973-998. MR**1171974 (93d:35065)****[HV3]**-,*Blow-up profiles in one-dimensional, semilinear parabolic problems*, Comm. Partial Differential Equations**17**(1992), 205-219. MR**1151261 (93b:35066)****[HV4]**-,*Generic behaviour of one-dimensional blow-up patterns*, Ann. Scuola Norm. Sup. Pisa (to appear).**[HV5]**-,*Plane structures in thermal runaway*, Israel J. Math. (to appear). MR**1231197 (94i:35090)****[K]**T. Kato,*A short introduction to perturbation theory for linear operators*, Springer-Verlag, Berlin, Heidelberg, and New York, 1982. MR**678094 (83m:47015)****[L]**A. A. Lacey,*The form of blow-up for nonlinear parabolic equations*, Proc. Roy. Soc. Edinburgh Sect. A**98**(1984), 183-202. MR**765494 (86b:35091)****[Li]**W. Liu,*Blow-up behaviour for semilinear heat equations*:*multi-dimensional case*, Rocky Mountain J. Math. (to appear). MR**1256450 (95a:35014)****[W]**F. B. Weissler,*Single point blow-up for a general semilinear heat equation*, Indiana Univ. Math. J.**34**(1983), 881-913. MR**808833 (87a:35023)**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
35K60,
35A20,
35B05

Retrieve articles in all journals with MSC: 35K60, 35A20, 35B05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1993-1134760-2

Keywords:
Semilinear diffusion equations,
asymptotic behaviour,
classification of singularities,
blow-up

Article copyright:
© Copyright 1993
American Mathematical Society