Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On Dubrovin valuation rings in crossed product algebras


Authors: Darrell Haile and Patrick Morandi
Journal: Trans. Amer. Math. Soc. 338 (1993), 723-751
MSC: Primary 16H05; Secondary 12G05, 13F30, 16G30, 16W60
DOI: https://doi.org/10.1090/S0002-9947-1993-1104201-X
MathSciNet review: 1104201
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ F$ be a field and let $ V$ be a valuation ring in $ F$. If $ A$ is a central simple $ F$-algebra then $ V$ can be extended to a Dubrovin valuation ring in $ A$. In this paper we consider the structure of Dubrovin valuation rings with center $ V$ in crossed product algebras $ (K/F,G,f)$ where $ K/F$ is a finite Galois extension with Galois group $ G$ unramified over $ V$ and $ f$ is a normalized two-cocycle. In the case where $ V$ is indecomposed in $ K$ we introduce a family of orders naturally associated to $ f$, examine their basic properties, and determine which of these orders is Dubrovin. In the case where $ V$ is decomposed we determine the structure in the case of certain special discrete, finite rank valuations.


References [Enhancements On Off] (What's this?)

  • [AS] S. Amitsur and L. Small, Prime ideals in $ PI$ rings, J. Algebra 62 (1980), 358-383. MR 563234 (81c:16027)
  • [BG] H. Brungs and J. Gräter, Extensions of valuation rings in central simple algebras, Trans. Amer. Math. Soc. 317 (1990), 287-302. MR 946216 (90d:16023)
  • [D$ _{1}$] N. Dubrovin, Noncommutative valuation rings, Trudy Moscov. Mat. Obshch. 45 (1982), 265-280; English transl., Trans. Moscow Math. Soc. 45 (1984), 273-287. MR 704633 (85d:16002)
  • [D$ _{2}$] -, Noncommutative valuation rings in simple finite-dimensional algebras over a field, Mat. Sb. 123 (1984), 496-509; English transl., Math. USSR-Sb. 51 (1985), 493-505. MR 740675 (85j:16020)
  • [E] O. Endler, Valuation theory, Springer-Verlag, Berlin and New York, 1972. MR 0357379 (50:9847)
  • [H] D. Haile, Crossed-product orders over discrete valuation rings, J. Algebra 105 (1987), 116-148. MR 871749 (88b:16013)
  • [JW] B. Jacob and A. Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), 126-179. MR 1031915 (91d:12006)
  • [M] P. Morandi, Value functions on central simple algebras, Trans. Amer. Math. Soc. 315 (1989), 605-622. MR 986697 (90e:16007)
  • [MW] P. Morandi and A. Wadsworth, Integral Dubrovin valuation rings, Trans. Amer. Math. Soc. 315 (1989), 623-640. MR 986696 (91d:16076)
  • [R] R. Ribenboim, Theorie des valuations, Presses Univ. Montréal, Montréal, 1968. MR 0249425 (40:2670)
  • [W] A. Wadsworth, Dubrovin valuation rings and Henselization, Math. Ann. 283 (1989), 301-328. MR 980600 (90f:16009)
  • [We] M. Westmoreland, Doctoral dissertation, University of Texas at Austin, 1990.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16H05, 12G05, 13F30, 16G30, 16W60

Retrieve articles in all journals with MSC: 16H05, 12G05, 13F30, 16G30, 16W60


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1104201-X
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society