Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Ricci flow, Einstein metrics and space forms


Author: Rugang Ye
Journal: Trans. Amer. Math. Soc. 338 (1993), 871-896
MSC: Primary 58E11; Secondary 53C25, 58G11
DOI: https://doi.org/10.1090/S0002-9947-1993-1108615-3
MathSciNet review: 1108615
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The main results in this paper are: (1) Ricci pinched stable Riemannian metrics can be deformed to Einstein metrics through the Ricci flow of R. Hamilton; (2) (suitably) negatively pinched Riemannian manifolds can be deformed to hyperbolic space forms through Ricci flow; and (3) $ {L^2}$-pinched Riemannian manifolds can be deformed to space forms through Ricci flow.


References [Enhancements On Off] (What's this?)

  • [Be] A. Besse, Einstein manifolds, Springer, 1987. MR 867684 (88f:53087)
  • [De-Ka] D. DeTurck and J. Kazdan, Some regularity theorems in Riemannian geometry, Ann. Sci. École Norm. Sup. (4) 14 (1980), 249-260. MR 644518 (83f:53018)
  • [Fa-Jo] F. T. Farrell and L. E. Jones, Negatively curved manifolds with exotic smooth structures, J. Amer. Math. Soc. 2 (1989), 899-908. MR 1002632 (90f:53075)
  • [Gal] S. Gallot, Inégalités isopérimétriques, courbure de Ricci et invariants géométriques. I, C. R. Acad. Sci. Paris Ser. I Math. 296 (1983), 333-336. MR 697966 (85c:53069a)
  • [Gao] L. Gao, Convergence of Riemannian manifolds, Ricci pinching and $ {L^{N/2}}$-curvature pinching, preprint.
  • [Gr] M. Gromov, Manifolds of negative curvature, J. Differential Geom. 13 (1978), 223-230. MR 540941 (80h:53040)
  • [Gr-Th] M. Gromov and W. Thurston, Pinching constants for hyperbolic manifolds, Invent. Math. 89 (1987), 1-12. MR 892185 (88e:53058)
  • [Ha1] R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), 255-306. MR 664497 (84a:53050)
  • [Ha2] -, Four-manifolds with positive curvature operator, J. Differential Geom. 24 (1986), 153-179. MR 862046 (87m:53055)
  • [Ha3] -, Lectures on heat equations in geometry, Lecture Notes, Hawaii, 1989.
  • [Hu] G. Huisken, Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom. 17 (1985), 47-62. MR 806701 (86k:53059)
  • [Ko1] N. Koiso, Nondeformability of Einstein metrics, Osaka J. Math. 15 (1978), 419-433. MR 504300 (81h:53046)
  • [Ko2] -, On the second derivative of the total scalar curvature, Osaka J. Math. 16 (1979), 413-421. MR 539596 (80j:53047)
  • [Ko3] -, Rigidity and stability of Einstein metrics. The case of compact symmetric spaces, Osaka J. Math. 17 (1970), 51-73. MR 558319 (82a:53055)
  • [Li] P. Li, On the Sobolev constant and the $ p$-spectrum of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. 13 (1980), 451-469. MR 608289 (82h:58054)
  • [Ma] C. Margerin, Pointwise pinched manifolds are space forms, Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc., Providence, R.I., 1986, pp. 307-328. MR 840282 (87g:53063)
  • [Mi] M. Min-Oo, Almost Einstein manifolds of negative Ricci curvature, J. Differential Geom. 32 (1990), 457-472. MR 1072914 (91g:53047)
  • [Mi-Ru] M. Min-Oo and E. A. Ruh, $ {L^2}$-curvature pinching, preprint.
  • [Mo] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134. MR 0159139 (28:2357)
  • [Ni] S. Nishikawa, Deformation of Riemannian metrics and manifolds with bounded curvature ratios, Proc. Sympos. Pure Math., vol. 44, Amer. Math. Soc. Providence, R.I., 1986, pp. 343-352. MR 840284 (87i:58032)
  • [Pe] S. Peters, Convergence of Riemannian manifolds, Composito Math. 62 (1987), 3-16. MR 892147 (88i:53076)
  • [Ru] E. A. Ruh, Riemannian manifolds with bounded curvature ratios, J. Differential Geom. 17 (1982), 643-653. MR 683169 (84d:53043)
  • [Sc] R. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, preprint. MR 994021 (90g:58023)
  • [Sh] W. Shi, Ricci deformation of the metric on complete noncompact Riemannian manifolds, J. Differential Geom. 29 (1989). MR 1010165 (90f:53080)
  • [Ya] D. Yang, $ {L^p}$ pinching and compactness theorems for compact Riemannian manifolds, preprint.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58E11, 53C25, 58G11

Retrieve articles in all journals with MSC: 58E11, 53C25, 58G11


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1108615-3
Keywords: Ricci flow, Einstein metrics, stability, space forms
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society