Extending the -design concept

Authors:
A. R. Calderbank and P. Delsarte

Journal:
Trans. Amer. Math. Soc. **338** (1993), 941-952

MSC:
Primary 05E30; Secondary 05B05, 33C45

MathSciNet review:
1134756

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a family of -subsets of a -set , with . Given only the inner distribution of , i.e., the number of pairs of blocks that meet in points (with ), we are able to completely describe the regularity with which meets an arbitrary -subset of , for each order (with ). This description makes use of a linear transform based on a system of dual Hahn polynomials with parameters , , . The main regularity parameter is the dimension of a well-defined subspace of , called the -form space of . (This subspace coincides with if and only if is a -design.) We show that the -form space has the structure of an ideal, and we explain how to compute its canonical generator.

**[1]**A. R. Calderbank and P. Delsarte,*On error-correcting codes and invariant linear forms*, SIAM J. Discrete Math.**6**(1993), no. 1, 1–23. MR**1201986**, 10.1137/0406001**[2]**A. R. Calderbank, P. Delsarte, and N. J. A. Sloane,*A strengthening of the Assmus-Mattson theorem*, IEEE Trans. Inform. Theory**37**(1991), no. 5, 1261–1268. MR**1136663**, 10.1109/18.133244**[3]**P. Delsarte,*An algebraic approach to the association schemes of coding theory*, Philips Res. Rep. Suppl.**10**(1973), vi+97. MR**0384310****[4]**Ph. Delsarte,*Pairs of vectors in the space of an association scheme*, Philips Res. Rep.**32**(1977), no. 5-6, 373–411. MR**0498190****[5]**Ph. Delsarte,*Hahn polynomials, discrete harmonics, and 𝑡-designs*, SIAM J. Appl. Math.**34**(1978), no. 1, 157–166. MR**0460158****[6]**Charles F. Dunkl,*Spherical functions on compact groups and applications to special functions*, Symposia Mathematica, Vol. XXII (Convegno sull’Analisi Armonica e Spazi di Funzioni su Gruppi Localmente Compatti, INDAM, Rome, 1976) Academic Press, London, 1977, pp. 145–161. MR**0622207****[7]**Charles F. Dunkl,*An addition theorem for Hahn polynomials: the spherical functions*, SIAM J. Math. Anal.**9**(1978), no. 4, 627–637. MR**0486704****[8]**R. L. Graham, S.-Y. R. Li, and W. C. W. Li,*On the structure of 𝑡-designs*, SIAM J. Algebraic Discrete Methods**1**(1980), no. 1, 8–14. MR**563008**, 10.1137/0601002**[9]**J. E. Graver and W. B. Jurkat,*The module structure of integral designs*, J. Combinatorial Theory Ser. A**15**(1973), 75–90. MR**0329930****[10]**Samuel Karlin and James L. McGregor,*The Hahn polynomials, formulas and an application*, Scripta Math.**26**(1961), 33–46. MR**0138806****[11]**D. K. Ray-Chaudhuri and N. M. Singhi,*On existence of 𝑡-designs with large 𝑣 and 𝜆*, SIAM J. Discrete Math.**1**(1988), no. 1, 98–104. MR**936611**, 10.1137/0401011**[12]**Richard M. Wilson,*Inequalities for 𝑡-designs*, J. Combin. Theory Ser. A**34**(1983), no. 3, 313–324. MR**700037**, 10.1016/0097-3165(83)90065-1**[13]**-,*On the theory of*-*designs*, Enumeration and Designs (D. M. Jackson and S. A. Vanstone, eds.), Academic Press, New York, 1984, pp. 19-49.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
05E30,
05B05,
33C45

Retrieve articles in all journals with MSC: 05E30, 05B05, 33C45

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1993-1134756-0

Keywords:
-design,
-form space,
-distribution matrix,
dual Hahn polynomials

Article copyright:
© Copyright 1993
American Mathematical Society