Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Extending the $ t$-design concept


Authors: A. R. Calderbank and P. Delsarte
Journal: Trans. Amer. Math. Soc. 338 (1993), 941-952
MSC: Primary 05E30; Secondary 05B05, 33C45
DOI: https://doi.org/10.1090/S0002-9947-1993-1134756-0
MathSciNet review: 1134756
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \mathfrak{B}$ be a family of $ k$-subsets of a $ v$-set $ V$, with $ 1 \leq k \leq v/2$. Given only the inner distribution of $ \mathfrak{B}$, i.e., the number of pairs of blocks that meet in $ j$ points (with $ j = 0,1, \ldots ,k$), we are able to completely describe the regularity with which $ \mathfrak{B}$ meets an arbitrary $ t$-subset of $ V$, for each order $ t$ (with $ 1 \leq t \leq v/2$). This description makes use of a linear transform based on a system of dual Hahn polynomials with parameters $ v$, $ k$, $ t$. The main regularity parameter is the dimension of a well-defined subspace of $ {\mathbb{R}^{t + 1}}$, called the $ t$-form space of $ \mathfrak{B}$. (This subspace coincides with $ {\mathbb{R}^{t + 1}}$ if and only if $ \mathfrak{B}$ is a $ t$-design.) We show that the $ t$-form space has the structure of an ideal, and we explain how to compute its canonical generator.


References [Enhancements On Off] (What's this?)

  • [1] A. R. Calderbank and P. Delsarte, On error-correcting codes and invariant linear forms, SIAM J. Discrete Math. 6 (1993), 1-23. MR 1201986 (93m:94025)
  • [2] A. R. Calderbank, P. Delsarte, and N. J. A. Sloane, A strengthening of the Assmus-Mattson theorem, IEEE Trans. Information Theory IT-37 (1991), 1261-1268. MR 1136663 (92k:94021)
  • [3] P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl. 10 (1973). MR 0384310 (52:5187)
  • [4] -, Pairs of vectors in the space of an association scheme, Philips Res. Rep. 32 (1977), 373-411. MR 0498190 (58:16345)
  • [5] -, Hahn polynomials, discrete harmonics, and $ t$-designs, SIAM J. Appl. Math. 34 (1978), 157-166. MR 0460158 (57:154)
  • [6] C. F. Dunkl, Spherical functions on compact groups and applications to special functions, Sympos. Math. 22 (1977), 145-161. MR 0622207 (58:29865)
  • [7] -, An addition theorem for Hahn polynomials: the spherical functions, SIAM J. Math. Anal. 9 (1978), 627-637. MR 0486704 (58:6405)
  • [8] R. L. Graham, S.-Y. R. Li, and W.-C. W. Li, On the structure of $ t$-designs, SIAM J. Algebraic Discrete Methods 1 (1980), 8-14. MR 563008 (83b:05042)
  • [9] J. E. Graver and W. B. Jurkat, The module structure of integral designs, J. Combin. Theory Ser. A 15 (1973), 75-90. MR 0329930 (48:8270)
  • [10] S. Karlin and J. L. McGregor, The Hahn polynomials, formulas and an application, Scripta Math. 26 (1961), 33-46. MR 0138806 (25:2249)
  • [11] D. K. Ray-Chaudhuri and N. M. Singhi, On existence of $ t$-designs with large $ v$ and $ \lambda $, SIAM J. Discrete Math. 1 (1988), 98-104. MR 936611 (89e:05034)
  • [12] R. M. Wilson, Inequalities for $ t$-designs, J. Combin. Theory Ser. A 34 (1983), 313-324. MR 700037 (84j:05023)
  • [13] -, On the theory of $ t$-designs, Enumeration and Designs (D. M. Jackson and S. A. Vanstone, eds.), Academic Press, New York, 1984, pp. 19-49.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 05E30, 05B05, 33C45

Retrieve articles in all journals with MSC: 05E30, 05B05, 33C45


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1134756-0
Keywords: $ t$-design, $ t$-form space, $ t$-distribution matrix, dual Hahn polynomials
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society