Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The geometry of Julia sets

Authors: Jan M. Aarts and Lex G. Oversteegen
Journal: Trans. Amer. Math. Soc. 338 (1993), 897-918
MSC: Primary 30D05; Secondary 54F65, 54H20, 58F23
MathSciNet review: 1182980
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The long term analysis of dynamical systems inspired the study of the dynamics of families of mappings. Many of these investigations led to the study of the dynamics of mappings on Cantor sets and on intervals. Julia sets play a critical role in the understanding of the dynamics of families of mappings. In this paper we introduce another class of objects (called hairy objects) which share many properties with the Cantor set and the interval: they are topologically unique and admit only one embedding in the plane. These uniqueness properties explain the regular occurrence of hairy objects in pictures of Julia sets--hairy objects are ubiquitous. Hairy arcs will be used to give a complete topological description of the Julia sets of many members of the exponential family.

References [Enhancements On Off] (What's this?)

  • [BO] W. T. Bula and L. G. Oversteegen, A characterization of smooth Cantor bouquets, Proc. Amer. Math. Soc. 108 (1990), 529-534. MR 991691 (90d:54066)
  • [C] W. J. Charatonik, The Lelek fan is topologically unique, Houston J. Math. 15 (1989), 27-34. MR 1002079 (90f:54050)
  • [D1] R. L. Devaney, Julia sets and bifurcation diagrams for exponential maps, Bull. Amer. Math. Soc. 11 (1984), 167-171. MR 741732 (86b:58091)
  • [D2] -, The structural instability of $ \operatorname{Exp}(z)$, Proc. Amer. Math. Soc. 94 (1985), 545-548. MR 787910 (86m:58093)
  • [D3] -, An introduction to chaotic dynamical systems, Benjamin, Menlo Park, Calif., 1986.
  • [D4] -, $ {e^z}$, dynamics and bifurcations, Internat. J. Bifurcations and Chaos 1 (1991), 287-308. MR 1120198 (92e:58176)
  • [DG] R. L. Devaney and L. R. Goldberg, Uniformization of attracting basins for exponential maps, Duke Math. J. 55 (1987), 253-266. MR 894579 (88h:30035)
  • [DGH] R. L. Devaney, L. R. Goldberg and J. H. Hubbard, A dynamical approximation of the exponential by polynomials, Preprint.
  • [DKe] R. L. Devaney and L. Keen, eds., Chaos and fractals, Proc. Sympos. Appl. Math., vol. 39, Amer. Math. Soc. Providence, R.I., 1989. MR 1010232 (91a:58130)
  • [DKr] R. L. Devaney and M. Krych, Dynamics of $ \exp (z)$, Ergodic Theory Dynamical Systems 4 (1984), 35-52. MR 758892 (86b:58069)
  • [DT] R. L. Devaney and F. Tangerman, Dynamics of entire functions near the essential singularity, Ergodic Theory Dynamical Systems 6 (1986), 498-503. MR 873428 (88e:58057)
  • [EL] A. È. Eremenko and M. Yu. Ljubich, Iterates of entire functions, Soviet Math. Dokl. 30 (1984), 592-594.
  • [FO1] R. J. Fokkink and L. G. Oversteegen, An example related to the Birkhoff Conjecture, Preprint, 1989.
  • [FO2] -, A recurrent non-rotational homeomorphism on the annulus, Trans. Amer. Math. Soc. 333 (1992), 865-875. MR 1088020 (92m:54071)
  • [G] L. R. Goldberg, Structural stability in the family $ \lambda {e^z}$ (in preparation).
  • [K] C. Kuratowski, Topologie. I, II, PWN, Warsaw, 1958, 1961.
  • [L] A. Lelek, On plane dendroids and their endpoints in the classical sense, Fund. Math. 49 (1961), 301-319. MR 0133806 (24:A3631)
  • [Ma] J. C. Mayer, An explosion point for the set of endpoints of the Julia set of $ \lambda \exp (z)$, Ergodic Theory Dynamical Systems 10 (1990), 177-183. MR 1053806 (91e:58153)
  • [McM] C. McMullen, Area and Hausdorff dimension of Julia sets of entire functions, Trans. Amer. Math. Soc. 300 (1987), 329-342. MR 871679 (88a:30057)
  • [Mi] M. Misiurewicz, On iterates of $ {e^z}$, Ergodic Theory Dynamical Systems 1 (1981), 103-106. MR 627790 (82i:58058)
  • [N] S.B. Nadler, Jr., Hyperspaces of sets, Monographs in Pure and Appl. Math., Vol. 49, Marcel Dekker, New York and Basel, 1978. MR 0500811 (58:18330)
  • [P] G. Piranian, The boundary of a simply connected domain, Bull. Amer. Math. Soc. 64 (1958), 45-55. MR 0100090 (20:6526)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 30D05, 54F65, 54H20, 58F23

Retrieve articles in all journals with MSC: 30D05, 54F65, 54H20, 58F23

Additional Information

Keywords: Julia set, exponential map, model, Cantor bouquet, hairy arc
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society