Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Localizing with respect to self-maps of the circle


Authors: Carles Casacuberta and Georg Peschke
Journal: Trans. Amer. Math. Soc. 339 (1993), 117-140
MSC: Primary 55P60; Secondary 18G99, 20J05, 55N25, 55P10
DOI: https://doi.org/10.1090/S0002-9947-1993-1123451-X
MathSciNet review: 1123451
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We describe a general procedure to construct idempotent functors on the pointed homotopy category of connected $ {\text{CW}}$-complexes, some of which extend $ P$-localization of nilpotent spaces, at a set of primes $ P$. We focus our attention on one such functor, whose local objects are $ {\text{CW}}$-complexes $ X$ for which the $ p$th power map on the loop space $ \Omega X$ is a self-homotopy equivalence if $ p \notin P$. We study its algebraic properties, its behaviour on certain spaces, and its relation with other functors such as Bousfield's homology localization, Bousfield-Kan completion, and Quillen's plus-construction.


References [Enhancements On Off] (What's this?)

  • [1] J. F. Adams, Localisation and completion, Lecture Notes, University of Chicago, 1975. MR 0420607 (54:8621)
  • [2] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison-Wesley, 1969. MR 0242802 (39:4129)
  • [3] G. Baumslag, Some aspects of groups with unique roots, Acta Math. 104 (1960), 217-303. MR 0122859 (23:A191)
  • [4] A. K. Bousfield, The localization of spaces with respect to homology, Topology 14 (1975), 133-150. MR 0380779 (52:1676)
  • [5] -, Homological localization towers for groups and $ \pi $-modules, Mem. Amer. Math. Soc. 10 (1977), No. 186.
  • [6] -, On the $ p$-adic completion of nonnilpotent spaces, Trans. Amer. Math. Soc. 331 (1992), 335-359. MR 1062866 (92g:55014)
  • [7] A. K. Bousfield and D. M. Kan, Homotopy limits, completions and localizations, Lecture Notes in Math., vol. 304, Springer-Verlag, 1972. MR 0365573 (51:1825)
  • [8] R. Brown, Topology: A geometric account of general topology, homotopy types, and the fundamental groupoid, Halsted Press, New York, 1988. MR 984598 (90k:54001)
  • [9] C. Casacuberta, The behaviour of homology in the localization of finite groups, Canad. Math. Bull. 34 (1991), 311-320. MR 1127752 (92g:20080)
  • [10] -, On the rationalization of the circle, Proc. Amer. Math. Soc. (to appear). MR 1176479 (94g:55016)
  • [11] C. Casacuberta, G. Peschke and M. Pfenniger, Sur la localisation dans les catégories avec une application à la théorie de l'homotopie, C. R. Acad. Sci. Paris Sér. I 310 (1990), 207-210. MR 1046906 (91i:55014)
  • [12] -, On orthogonal pairs in categories and localisation, Adams Memorial Symposium on Algebraic Topology, vol. 1, London Math. Soc. Lecture Note Ser., vol. 175, Cambridge Univ. Press, 1992, pp. 211-223. MR 1170580 (93f:18004)
  • [13] P. M. Cohn, Free rings and their relations, Academic Press, 1985. MR 800091 (87e:16006)
  • [14] A. Garcia Rodicio, Métodos homológicos en grupos $ P$-locales, Ph.D. thesis, Universidad de Santiago de Compostela, Spain, 1986. MR 871270 (88e:20028)
  • [15] S. Gitler, Cohomology operations with local coefficients, Amer. J. Math. 85 (1963), 156-188. MR 0158398 (28:1621)
  • [16] P. Hilton, G. Mislin and J. Roitberg, Localization of nilpotent groups and spaces, North-Holland Math. Studies, vol. 15, North-Holland, 1975. MR 0478146 (57:17635)
  • [17] P. Hilton and J. Roitberg, On the Zeeman comparison theorem for the homology of quasinilpotent fibrations, Quart. J. Math. Oxford Ser. (2) 27 (1976), 433-444. MR 0431151 (55:4153)
  • [18] G. Peschke, $ H$-semidirect products, Canad. Math. Bull. 30 (1987), 402-411. MR 919429 (89a:55009)
  • [19] -, Localizing groups with action, Publ. Mat. 33 (1989), 227-234. MR 1030966 (90j:55017)
  • [20] D. Quillen, Cohomology of groups, Actes Congrès Internat. Math., Tome 2, 1970, pp. 47-51. MR 0488054 (58:7627a)
  • [21] A. Reynol, $ P$-localization of some classes of groups, Ph.D. thesis, IME, Universidade de Sâo Paulo, Brazil, 1987.
  • [22] P. Ribenboim, Torsion et localisation de groupes arbitraires, Lecture Notes in Math., vol. 740, Springer-Verlag, 1978, pp. 444-456. MR 563516 (83h:20029)
  • [23] -, Equations in groups, with special emphasis on localization and torsion. I, Atti. Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. Ia (8) 19 (1987), 23-60. MR 1006946 (90k:20058)
  • [24] -, Equations in groups, with special emphasis on localization and torsion, II, Portugal. Math. 44 (1987), 417-445. MR 952790 (90j:20069)
  • [25] S. Sehgal, Topics in group rings, Marcel Dekker, 1978. MR 508515 (80j:16001)
  • [26] B. Stenström, Rings of quotients, Grundlehren Math. Wiss. 217 (1975).
  • [27] R. B. Warfield, Nilpotent groups, Lecture Notes in Math., vol. 513, Springer-Verlag, 1976. MR 0409661 (53:13413)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55P60, 18G99, 20J05, 55N25, 55P10

Retrieve articles in all journals with MSC: 55P60, 18G99, 20J05, 55N25, 55P10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1123451-X
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society