SOME COMPLETE Σ^1_2 SETS IN HARMONIC ANALYSIS

HOWARD BECKER, SYLVAIN KAHANE AND ALAIN LOUVEAU

ABSTRACT. We prove that several specific pointsets are complete Σ^1_2 (complete PCA). For example, the class of \mathcal{N}_0-sets, which is a hereditary class of thin sets that occurs in harmonic analysis, is a pointset in the space of compact subsets of the unit circle; we prove that this pointset is complete Σ^1_2. We also consider some other aspects of descriptive set theory, such as the nonexistence of Borel (and consistently with ZFC, the nonexistence of universally measurable) uniformizing functions for several specific relations. For example, there is no Borel way (and consistently, no measurable way) to choose for each \mathcal{N}_0-set, a trigonometric series witnessing that it is an \mathcal{N}_0-set.

1. Introduction

This paper is about some connections between descriptive set theory and three topics in analysis: Pointwise convergence of sequences of functions, increasing unions of members of a given collection of compact sets, and thin sets in harmonic analysis. The main purpose of the paper is to show that several specific pointsets are complete Σ^1_2. We also discuss some other aspects of descriptive set theory, such as the nonexistence of Borel-measurable uniformizing functions for several specific relations.

In this paper, all spaces are Polish. A pointset is Σ^1_1 if it is the projection of a Borel set; it is Π^1_n if it is the complement of a Σ^1_n set; it is Σ^1_{n+1} if it is the projection of a Π^1_n set. Another name for Σ^1_1, Π^1_1, Σ^1_2, and Π^1_2 sets is A (analytic), CA (coanalytic), PCA and CPCA sets, respectively. These collections of pointsets can also be viewed in terms of definability. A set $P \subset X$ is Σ^1_2 iff it has a definition of the form

$$x \in P \leftrightarrow \exists y \forall z((x, y, z) \in B),$$

where B is a Borel set in a product space $X \times Y \times Z$; P is Π^1_2 iff it has a definition of the form

$$x \in P \leftrightarrow \forall y \exists z((x, y, z) \in B),$$

for B Borel. This subject is presented in Kuratowski [18] and Moschovakis [20]. We tend to follow Moschovakis [20] in notation, terminology, etc.

A Σ^1_2 set S in a space X is called complete Σ^1_2 if for any Σ^1_2 subset Q of the Cantor set, 2^ω, there is a continuous $h: 2^\omega \to X$ such that $Q = h^{-1}[S]$.

Received by the editors June 13, 1991.

1991 Mathematics Subject Classification. Primary 04A15; Secondary 03E35, 28B20, 40A30, 43A46.

The first author was partially supported by NSF Grant DMS-8914426.

©1993 American Mathematical Society
0002-9947/93 $1.00 + $0.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Such an h is said to \textit{reduce} Q to S. A complete Σ_2^1 set is true Σ_1^1, that is, it is not Π_2^1. In §§2–4 we show that several natural examples of Σ_2^1 sets are in fact complete Σ_1^1.

In §§5, 6 we consider some other descriptive set theoretic facts about these examples. In §5 we show that there can be no simply definable uniformizing function (that is, selection or choice function) for certain natural relations associated with the above examples, and that it is consistent with ZFC that there is no measurable selection. It is known that ZFC, the usual set of axioms for set theory, is not sufficient to answer many questions about Σ_2^1 sets—either answer to the question is consistent. In §6 we point out that these consistency results are applicable to the specific examples of true Σ_2^1 sets discussed in this paper, e.g., to some classes of thin sets in harmonic analysis.

There are two technical lemmas which are used. We prove these lemmas in §§7, 8.

\section*{2. Pointwise convergent subsequences}

Consider the Polish space $(C[0, 1])^\omega$, that is, the topological product of countably many copies of $C[0, 1]$. In this space, consider the following two pointsets.

- $S_1 = \{ (f_n) : \text{some subsequence of } (f_n) \text{ converges pointwise} \}$,
- $S_2 = \{ (f_n) : \text{some subsequence of } (f_n) \text{ converges pointwise to a continuous limit} \}$.

Both S_1 and S_2 are Σ_2^1 sets. (The classification Σ_2^1 refers to the topology of the Polish space, that is, the topology of uniform convergence, not to the topology of pointwise convergence.)

\textbf{Theorem 2.1.} S_1 and S_2 are both complete Σ_2^1.

For S_2, this theorem was proved in Becker [3]. For S_1, the theorem was announced in Becker [3, 4], but no proof was given. We now give another proof for S_2 and the first proof for S_1.

\textbf{Lemma 2.2.} Let $Q \subset 2^\omega$ be any Σ_1^1 set. There exists a sequence of continuous functions $g_n : 2^\omega \times 2^\omega \to 2$ such that for all $w \in 2^\omega$, the following are equivalent.

\begin{enumerate}
 \item[(a)] $w \in Q$.
 \item[(b)] There is a subsequence (g_{n_i}) of (g_n) such that for every $x \in 2^\omega$, $g_{n_i}(w, x) \to 0$.
\end{enumerate}

Lemma 2.2 will be proved in §7. We use Lemma 2.2 to prove Theorem 2.1, and indeed to prove all the results in this paper.

\textbf{Proof of Theorem 2.1.} Let $Q \subset 2^\omega$ be an arbitrary Σ_1^1 set. We reduce Q to S_1 and S_2, simultaneously. In other words, for every $w \in 2^\omega$, we define a sequence of functions (f_n^w) from $[0, 1]$ into R such that:

\begin{enumerate}
 \item[(a)] The function $h : 2^\omega \to (C[0, 1])^\omega$ given by $h(w) = (f_n^w)$ is continuous.
 \item[(b)] If $w \in Q$ then some subsequence of (f_n^w) converges pointwise to a continuous limit (in fact, to 0).
 \item[(c)] If $w \notin Q$ then no subsequence of (f_n^w) converges pointwise.
\end{enumerate}

To do this, let (g_n) satisfy Lemma 2.2 for this set Q. Let $F_n^w : 2^\omega \to R$ be the function $F_n^w(x) = n \cdot g_n(w, x)$. Identify 2^ω with the Cantor middle third
set in \([0, 1]\), and let \(f_n^w\) be such that \(f_n^w \uparrow 2^\omega = F_n^w\) and \(f_n^w\) is linear on each interval of \([0, 1] \setminus 2^\omega\). It is easy to check that (a)–(c) hold. □

The functions \(f_n^w\) produced in the above proof are obviously not bounded. But by combining the proof of Theorem 2.1 with the method of Kaufman [12], we can get the \(f_n^w\)'s to be uniformly bounded. Thus, viewing \(C[0, 1]\) as a Banach space, we also obtain a proof of Theorem 2.3.

Let

\[S_3 = \{(f_n) : \text{Some subsequence of } (f_n) \text{ is weakly Cauchy}\}, \]
\[S_4 = \{(f_n) : \text{Some subsequence of } (f_n) \text{ is weakly convergent}\}. \]

Theorem 2.3. \(S_3\) and \(S_4\) are both complete \(\Sigma_2^1\).

In Banach spaces other than \(C[0, 1]\), the situation may be very different. For example, if \(X\) is a separable-
sual space or \(X\) is \(l_1\), then the sets of weakly Cauchy and weakly convergent sequences are Borel sets in \(X^\omega\). (For \(l_1\) this follows from Schur’s Theorem; see Diestel [6].) Hence for such an \(X\), the analogs of \(S_3\) and \(S_4\) are \(\Sigma_1^1\) sets. We do not know of any characterization of which separable Banach spaces satisfy 2.3.

3. Increasing Unions of Compact Sets

Let \(X\) be a compact Polish space and let \(\mathcal{K}(X)\) denote the space of non-empty compact subsets of \(X\) with the Hausdorff metric \(\delta:\)

\[\delta(K, K') = \sup\{d(x, K), d(y, K') : x \in K', y \in K\}. \]

\(\mathcal{K}(X)\) is also compact and Polish. In §§3, 4 we will be considering the complexity of pointsets in spaces of the form \(\mathcal{K}(X)\).

Let \(C \subset \mathcal{K}(X)\) be a hereditary class of compact sets, and define \(C^\sigma\) and \(C^\uparrow\) as follows:

\[C^\sigma = \left\{ K \in \mathcal{K}(X) : \text{There exists a sequence } (K_n) \text{ of members} \right\}, \]

\[C^\uparrow = \left\{ K \in \mathcal{K}(X) : \text{There exists a sequence } (K_n) \text{ of members} \right\}. \]

Of course if \(C\) is closed under finite unions, then \(C^\uparrow = C^\sigma\).

If \(C\) is \(\Pi_1^1\), then \(C^\sigma\) is also \(\Pi_1^1\). (Proof. \(K \in C^\sigma\) iff for every compact \(K' \subset K\) there is a basic open neighborhood \(N\) of \(X\) such that \(N \cap K' \neq \emptyset\) and \(\overline{N} \cap K' \in C\).) For some interesting \(C\)'s, \(C^\sigma\) is known to be complete \(\Pi_1^1\).

For a thorough analysis of these \(\Pi_1^1\), \(\sigma\)-ideals, see Kechris [13] and Kechris, Louveau-Woodin [15].

If \(C\) is \(\Sigma_2^1\), then \(C^\uparrow\) is also \(\Sigma_2^1\). We show below that \(C^\uparrow\) is, in general, no simpler than \(\Sigma_2^1\), even when \(C\) is an open set. (If \(C\) is closed then \(C^\uparrow = C\).)
We work with the spaces 2^ω and $\mathcal{H}(2^\omega)$. Let $p_n : 2^\omega \rightarrow 2$ denote the nth projection function. Consider the following pointset in the space $\mathcal{H}(2^\omega)$.

$$Z = \{K : \text{Some subsequence of } (p_n) \text{ converges to 0 pointwise on } K\}.$$

Theorem 3.1. Z is complete Σ_2^1.

Proof. Z is obviously Σ_2^1. Let $Q \subset 2^\omega$ be an arbitrary Σ_2^1 set. To prove completeness, we define a continuous $h : 2^\omega \rightarrow \mathcal{H}(2^\omega)$ which reduces Q to Z. Let (g_n) satisfy Lemma 2.2 for this Q. For any $w \in 2^\omega$, let

$$K_w = \{y \in 2^\omega : \text{There is an } x \in 2^\omega \text{ such that for all } n, y(n) = g_n(w, x)\}.$$

Then K_w is compact and the function $h: w \mapsto K_w$ is continuous. If $w \in Q$, then by Lemma 2.2, there is a strictly increasing $(n_i) \in \omega^{\omega}$ such that for all $x \in 2^\omega$, $g_{n_i}(w, x) \rightarrow 0$; hence for each $y \in K_w$, $y(n_i) \rightarrow 0$, that is, (p_{n_i}) converges to 0 pointwise on K_w; so $K_w \in Z$. Conversely, if (p_{n_i}) converges to 0 pointwise on K_w, then for all x, $g_{n_i}(w, x) \rightarrow 0$, which shows that $w \in Q$. Thus h reduces Q to Z. \[\square\]

Let

$$Y = \{K \in \mathcal{H}(2^\omega) : \text{For all } m, \text{ there is an } n > m \text{ such that } p_n \text{ is identically 0 on } K\}.$$

Then Y is a hereditary G_δ and $Z = Y \uparrow$, so sets of this form can be complete Σ_2^1. But Y is not open.

Theorem 3.2. There is a hereditary open $C \subset \mathcal{H}(2^\omega)$ such that $C \uparrow$ is complete Σ_2^1.

Proof. Let

$$C = \{K : \text{There is an } n \text{ such that } p_n \text{ is identically 0 on } K\}.$$

Clearly C is hereditary and open and $C \uparrow = Z \cup C$. So it will suffice to show that there is a continuous $h: \mathcal{H}(2^\omega) \rightarrow \mathcal{H}(2^\omega)$ which reduces Z to $Z \cup C$. Let

$$F = \{x \in 2^\omega : \text{There is at most one } n \text{ such that } x(n) = 1\}.$$

Let $h(K) = K \cup F$. \[\square\]

If $C \subset \mathcal{H}(X)$ is a hereditary Σ_2^1 set, then $(C \uparrow) \uparrow$ is again Σ_2^1. We do not know whether or not there exists a compact Polish space X and a hereditary Borel $C \subset \mathcal{H}(X)$ for which $(C \uparrow) \uparrow$ is true Σ_2^1.

4. Thin sets in harmonic analysis

Let \mathcal{S}_I denote the set of all strictly increasing sequences of natural numbers. Let $T = \mathbb{R}/2\pi\mathbb{Z}$ be the unit circle. Consider the following four classes of closed
subsets of T, that is, the following four pointsets in the space $\mathcal{H}(T)$.

$$D = \{ K : \text{ For some } (n_i) \in SI, \text{ the sequence } (\sin n_i t) \text{ converges to } 0 \text{ uniformly on } K \}.$$

$$N_0 = \left\{ K : \text{ For some } (n_i) \in SI, \text{ the series } \sum_{i=0}^{\infty} \sin n_i t \text{ converges absolutely on } K \right\}.$$

$$A = \{ K : \text{ For some } (n_i) \in SI, \text{ the sequence } (n_i t) \text{ converges to } 0 \text{ pointwise on } K \}.$$

$$H = \{ K : \text{ For some } (n_i) \in SI \text{ and some interval } I \text{ of } T, \text{ for all } i, \ n_i K \cap I = \emptyset \}.$$

These four hereditary classes of closed sets constitute four types of exceptional sets, or thin sets, which occur in harmonic analysis and which have been studied extensively. N_0-sets were introduced by Salem, in an attempt to simplify the definition of a class of thin sets called N-sets. A-sets were introduced by Arbault [1], who proved that A-sets, N-sets, and N_0-sets are different notions. The letter A stands for Arbault, and N stands for Nemytzkii [2]. H-sets were introduced by Rajchman [22]; H is for Hardy-Littlewood. We do not know where the concept of a D-set originates. D is for Dirichlet, who proved that finite sets are D-sets. Information on these (and many other) classes of thin sets can be found in the following references: Bary [21], Kahane [8], Kahane-Salem [9], Körner [17], and Lindahl-Poulsen [19]. Increasing unions of such classes, e.g., $D \uparrow$, are studied in Kahane [10, 11].

There has been a considerable amount of work done on connections between descriptive set theory and various types of thin sets in harmonic analysis. See Kechris-Louveau [14] for details. In particular, several important classes of thin sets have been proved to be complete Π^1_1. In this paper we are concerned with classes of thin sets which, from the point of view of definability, are much more complicated: complete Σ^1_2.

It is easy to see that

$$D \uparrow \subset N_0 \subset A \subset H \uparrow.$$

It is also easy to see that (when considered as pointsets in the space $\mathcal{H}(T)$) N_0 and A are Σ^1_2 and D and H are Borel, hence $D \uparrow$ and $H \uparrow$ are Σ^1_2.

Theorem 4.2. $D \uparrow, N_0, A, \text{ and } H \uparrow$ are all complete Σ^1_2.

To prove Theorem 4.2 we need another lemma.

Lemma 4.3. There is a continuous $h : \mathcal{H}(2^\omega) \to \mathcal{H}(T)$ such that for all $K \in \mathcal{H}(2^\omega)$:

(a) If $K \in Z$ then $h(K) \in D \uparrow$.

(b) If $K \notin Z$ then $h(K) \notin H \uparrow$.

Lemma 4.3 will be proved in §8. Note that Theorem 4.2 follows immediately from Theorem 3.1, (4.1), and Lemma 4.3.
A set K is an N-set if for some sequence (a_n) of positive numbers with $\sum a_n = \infty$, the series $\sum a_n \sin nt$ converges absolutely on K. Although the concept of an N_0-set was originally thought to be simpler than that of an N-set, it is actually more complicated. Using work of Björk and Kaufman (see Lindahl and Poulsen [19]), it can be shown that N is a G_δ-set in $\mathcal{H}(T)$, whereas N_0 is complete L^2.

Let X be the space of all probability measures on T with the weak*-topology. If $C \subset \mathcal{H}(T)$, let C^\perp denote those measures which annihilate all sets in C. Kechris and Lyons [16] and Kaufman [12] have shown that D^\perp and H^\perp (hence $(D \uparrow)^\perp$ and $(H \uparrow)^\perp$) are both true Σ^1_1 sets in the space X. Since N_0 and A are true Σ^1_2, N_0^\perp and A^\perp may seem, at first glance, to be good candidates for true Π^1_2 sets—but they are not. In fact, $D^\perp \subset A^\perp$; this follows from Egorov's theorem that a pointwise convergent sequence converges uniformly on a set of positive measure. Hence $A^\perp = N_0^\perp = D^\perp$, and it is a Π^1_1 set. We thank Robert Kaufman for his helpful comments on these matters.

5. ON THE COMPLEXITY OF UNIFORMIZING FUNCTIONS

Let $R \subset X \times Y$ be a relation in some product space with the property that for every $x \in X$ there exists a $y \in Y$ such that $(x, y) \in R$. A function $f: X \rightarrow Y$ is called a uniformizing function for R if for all $x \in X$, $(x, f(x)) \in R$. Obviously a uniformizing function exists. But there may be no “nice” uniformizing function.

All the theorems of §§2-4 can be turned into theorems about the nonexistence of nice uniformizing functions. We will explicitly state these nonuniformization theorems for the case of N_0-sets. Similar theorems hold for the other complete Σ^1_2 sets of §§2-4.

Let $W \subset (\mathcal{H}(T) \times \omega^\omega)$ be the following relation:

\[
W = \left\{ (K, (n_i)) : (n_i) \in SI \text{ and the series } \sum_{i=0}^{\infty} \sin n_i t \text{ converges absolutely on } K \right\}.
\]

(Thus W is a Π^1_1 set whose projection is the Σ^1_2 set N_0. The pair $(K, (n_i))$ is in W if (n_i) is a witness that K is an N_0-set.) Let E be a subset of N_0 which is closed in $\mathcal{H}(T)$; then W^E denotes $W \cap (E \times \omega^\omega)$. Clearly $E \times \omega^\omega$ is Polish and W^E is a Π^1_1 set in $E \times \omega^\omega$.

Since $E \subset N_0$, for every $K \in E$ there exists an (n_i) in ω^ω such that $(K, (n_i)) \in W^E$. So uniformizing functions for W^E exist. But, in general, there does not exist a Borel uniformizing function. In fact a much stronger nonuniformization theorem holds.

Theorem 5.1. Let \mathcal{F} be a family of functions (with domain and range various Polish spaces) with the following closure property: If $f \in \mathcal{F}$, b is a Borel function, and h is a homeomorphism then $b \circ f \circ h$ is in \mathcal{F}. Suppose that there exists a Π^1_1 set $P \subset \omega^\omega \times \omega^\omega$ such that for all $x \in \omega^\omega$ there is a $y \in \omega^\omega$ with $(x, y) \in P$, but there is no uniformizing function for P in \mathcal{F}. Then there is an uncountable closed $E \subset N_0$ such that there is no uniformizing function for W^E in \mathcal{F}.
What Theorem 5.1 says is that uniformizing the W^E's is no simpler than uniformizing an arbitrary Π_1^1 relation. So all the Π_1^1 nonuniformization theorems of descriptive set theory are applicable to relations of the form W^E. There is a $\Pi_1^1 \mathcal{P} \subset 2^\omega \times 2^\omega$ with no Borel uniformization. So taking \mathcal{F} to be the Borel functions, Theorem 5.1 implies that for some E, W^E has no Borel uniformization. (This E can be taken to be hereditary; if not, take its hereditary closure.) Similarly, if \mathcal{F} is the family of C-measurable functions (see Burgess [5]), or one of the other classical families of measurable functions, again there is an E such that W^E has no uniformization in \mathcal{F}. Kondo's Theorem states that W^E always has a Δ^1_1 uniformization. Theorem 5.1 actually says that Δ^1_1 is best possible for uniformizing relations of the form W^E. Or in the language of effective descriptive set theory, Δ^1_1 is the best possible basis for picking a witness that a given set is an \aleph_0-set. For information about uniformization and basis theorems, and about nonuniformization and nonbasis theorems, see Moschovakis [20].

Instead of considering the existence of simply definable uniformizing functions, one could consider functions which are nice in a different sense: measurable. This leads us to a question which cannot be answered in ZFC.

Theorem 5.2. If ZFC is consistent, then so is each of the following two theories.

(a) $ZFC + \text{there is a universally measurable } f: \mathcal{P}(T) \to \omega^\omega \text{ such that for all } K \in \aleph_0, (K, f(K)) \in W$.

(b) $ZFC + \text{there exists an uncountable closed } E \subset \aleph_0 \text{ such that: If } f \text{ is any uniformizing function for } W^E \text{ and } \mu \text{ is any nonzero measure on } E \text{ which gives points measure 0, then } f \text{ is not measurable with respect to } \mu$.

Part (a) of Theorem 5.2 follows trivially from the fact that it is relatively consistent with ZFC that every Σ^1_2 relation has a universally measurable uniformization. Part (b) of Theorem 5.2 follows from Theorem 5.1, by taking \mathcal{F} to be the family of functions which are measurable with respect to some such μ; it is consistent that there is a $\Pi_1^1 \mathcal{P} \subset 2^\omega \times 2^\omega$ which is the graph of a function that is not measurable with respect to any such μ (see Moschovakis [20]).

Large cardinal axioms imply that it is true (as opposed to merely consistent) that Σ^1_2 relations have measurable uniformizations; hence these axioms imply that the W^E's do. For information on consistency proofs, large cardinals, etc., and their relationship to descriptive set theory, see Jech [7] and Moschovakis [20].

As previously mentioned, similar theorems hold for the other complete Σ^1_1 sets of §§2–4. For example, for S_1: There is no simply definable function (and consistently, no measurable function) $f: E \to (C[0, 1])^\omega$, for $E \subset S_1$, such that $f((f_n))$ is a pointwise convergent subsequence of (f_n). For D_1: There is no nice function $f: E \to (\mathcal{P}(T))^\omega$ such that $f(K)$ is an increasing sequence of D-sets whose union covers K. This situation for increasing countable unions is different from the case of arbitrary countable unions. If $C \subset \mathcal{P}(X)$ is hereditary and Borel then the Cantor-Bendixson derivation (see Kechris and Louveau [14]) gives a function $f: C^\sigma \to C^\omega$ such that for all $K \in C^\sigma$, $\bigcup f(K) = K$; moreover, this function is Δ^1_1 (on its domain). This means that in the case of increasing countable unions, there is nothing similar to the Cantor-Bendixson analysis of countable unions. For other, more combinatorial, differences between the two operations, see Kahane [11].
Theorem 5.1 can be proved by the same method used to prove that \(N_0 \) is complete \(\Sigma^1_2 \), so we merely note the changes necessary and leave the details to the reader. Saying \(N_0 \) is complete \(\Sigma^1_2 \) means:

(5.3) For any \(\Sigma^1_2 \) set \(Q \subset 2^\omega \) there is a continuous \(h: 2^\omega \rightarrow \mathcal{H}(T) \) such that for all \(w \in 2^\omega \), the following two conditions are satisfied.

(a) If \(w \in Q \) then there exists an \((n_i) \) such that \((h(w), (n_i)) \in W \).
(b) If there exists an \((n_i) \) such that \((h(w), (n_i)) \in W \), then \(w \in Q \).

There is a stronger version of (5.3) which can be proved, namely

Theorem 5.4. For any \(\Pi^1_1 \) set \(P \subset 2^\omega \times 2^\omega \), there is a one-to-one continuous \(h: 2^\omega \rightarrow \mathcal{H}(T) \) and a Borel function \(b: \omega^\omega \rightarrow 2^\omega \), such that for all \(w \in 2^\omega \), the following two conditions are satisfied.

(a) If \(\exists y \in 2^\omega \) such that \(\langle w, y \rangle \in P \), then \(\exists (n_i) \) such that \(\langle h(w), (n_i) \rangle \in W \).
(b) For all \((n_i) \in \omega^\omega \), if \(\langle h(w), (n_i) \rangle \in W \), then \(\langle w, b((n_i)) \rangle \in P \).

Note that (5.3) follows immediately from Theorem 5.4, by taking \(P \) to be a \(\Pi^1_1 \) set whose projection is \(Q \). The proof of Theorem 5.4 is implicit in the proof of (5.3) given in this paper. The various reducing functions defined in this paper are in fact not one-to-one. But by minor changes in the definition, we can make them one-to-one without harming anything else. The one place where this is not obvious is in the proof of Lemma 4.3. In §8, after proving Lemma 4.3, we indicate the modification needed to get a one-to-one reducing function.

We now prove Theorem 5.1 from Theorem 5.4. Let \(P \subset 2^\omega \times 2^\omega \) be a \(\Pi^1_1 \) relation with no uniformization in \(\mathcal{F} \) such that for all \(x \) there is a \(y \) with \(\langle x, y \rangle \in P \). Let \(h \) and \(b \) satisfy Theorem 5.4 and let \(E \) be the image of \(h \). Then there can be no uniformizing function \(f \) for \(WE \) which is in \(\mathcal{F} \); for if such an \(f \) existed, then \(b \circ f \circ h \) would uniformize \(P \).

6. Set theory and \(N_0 \)-sets

There are various types of pathological pointsets, e.g., nonmeasurable, which can be produced using the axiom of choice. It is consistent with \(ZFC \) that these pathologies occur at the level of \(\Sigma^1_2 \) sets (see Moschovakis [20]). It is also consistent that counterexamples to the continuum hypothesis (CH) occur at the level of \(\Sigma^1_2 \) sets (see Jech [7]).

Theorem 6.1. If \(ZFC \) is consistent, then so is each of the following two theories.

(a) \(ZFC \) + there exists an uncountable closed \(E \subset \mathcal{H}(T) \) such that the pointset \((N_0 \cap E) \):

(i) does not have the property of Baire (with respect to the space \(E \));
(ii) is not measurable with respect to any nonzero measure on \(E \) which gives points measure 0.

(b) \(ZFC \) + \(\neg CH \) + there is a closed \(E \subset \mathcal{H}(T) \) such that \(\text{card}(N_0 \cap E) = \aleph_1 \).

Note that (a)(ii) of Theorem 6.1 implies that in the space \(\mathcal{H}(T) \), \(N_0 \) is not a universally measurable set. Theorem 6.1 follows from the fact that \(N_0 \) is complete \(\Sigma^1_2 \) via one-to-one reduction functions (see Theorem 5.4ff); therefore the existence of \(\Sigma^1_2 \) subsets of \(2^\omega \) satisfying Theorem 6.1(a), (b), implies that \(\Sigma^1_2 \) sets of the form \(N_0 \cap E \) satisfy it. It is also consistent that no \(\Sigma^1_2 \) set exhibits...
the pathologies of Theorem 6.1, and large cardinal axioms imply that Σ^1_2 sets truly do not.

This method of proof also gives the next theorem, which set theorists may find amusing. There is a fixed uncountable closed set $E_0 \subseteq \mathcal{H}(T)$, with recursive code which can be explicitly defined, for which the following is provable in ZFC.

Theorem 6.2. Let $K \in E_0$. Then K is an \aleph_0-set iff K is constructible.

Constructible means in the smallest transitive model of ZFC containing all ordinals; see Jech [7] or Moschovakis [20].

We have, as in §5, stated the theorems for the case of \aleph_0-sets. But again, similar theorems hold for the other complete Σ^1_2 sets of §§2-4.

7. Proof of Lemma 2.2

Our proof of Lemma 2.2 is based on some ideas in Becker [3].

We first establish some notation. $X^{<\omega}$ is the set of all finite sequences from X. Finite sequences are denoted by lowercase Greek letters. $\sigma \prec \tau$ means that σ is an initial segment of τ, and similarly if x is an infinite sequence, $\sigma \prec x$ means that σ is an initial segment of x. A tree T on X is a subset of $X^{<\omega}$ such that if $\sigma \prec \tau$ and $\tau \in T$ then $\sigma \in T$. The proof of Lemma 2.2 will involve trees on $X = (2 \times 2 \times 2)$; we identify a sequence in $(2 \times 2 \times 2)^{<\omega}$ of length n with three length n sequences in $2^{<\omega}$, and similarly for infinite sequences. Let T be a tree on $(2 \times 2 \times 2)$; then $[T]$ denotes the set of infinite branches through T, that is,

$$[T] = \{(w, y, z) \in 2^\omega \times 2^\omega \times 2^\omega : \text{For all } n \in \omega, (w \upharpoonright n, y \upharpoonright n, z \upharpoonright n) \in T\}.$$

Lemma 7.1. Let $S \subseteq 2^\omega \times 2^\omega$ be Σ^1_1. There is a tree T on $2 \times 2 \times 2$ such that for all $(w, y) \in 2^\omega \times 2^\omega$, $(w, y) \in S$ iff: There is a $z \in 2^\omega$ which is not eventually 0 and $(w, y, z) \in [T]$.

The usual representation theorem for Σ^1_1 (see Moschovakis [20]) gives a tree T' on $2 \times 2 \times \omega$ such that S is the projection of $[T']$. This is another way of saying that S is the projection of a closed set in $2^\omega \times 2^\omega \times 2^\omega$. Lemma 7.1 follows from this by identifying $x \in \omega^\omega$ with $0^{x(0)}10^{x(1)}10^{x(2)}1\cdots \in 2^\omega$.

Fix a family $\{N_\sigma : \sigma \in (2 \times 2 \times \omega \times 2)^{<\omega}\}$ of clopen subsets of 2^ω with the following properties.

(i) If $\sigma \prec \tau$ then $N_\tau \subseteq N_\sigma$.

(ii) If σ and τ are incompatible then $N_\sigma \cap N_\tau = \emptyset$.

Let $n \mapsto \tau_n$ be an enumeration of $2^{<\omega}$ such that if $\tau_n \prec \tau_m$ then $n \leq m$.

Let t_n be the length of τ_n.

Let $\sigma = (\alpha, \beta, \gamma, \delta) \in (2 \times 2 \times \omega \times 2)^{<\omega}$ be a sequence, let $k + 1$ be its length, and let $n \in \omega$. Call σ n-good if all three of the following conditions hold.

(i) $\gamma \in \omega^{<\omega}$ is strictly increasing and $\gamma(k) = t_n$.

(ii) $\beta(k) = \delta(k) = 1$.

(iii) If $p = \text{card}\{m : \delta(m) = 1\}$ then $\alpha \upharpoonright p = t_n \upharpoonright p$.

Lemma 7.2. For any n, there are only finitely many sequences in $(2 \times 2 \times \omega \times 2)^{<\omega}$ which are n-good.
Now to prove Lemma 2.2, let $Q \subseteq 2^\omega$ be an arbitrary Σ^1_2 set. Let $P \subseteq 2^\omega \times 2^\omega$ be Π^1_1 such that $w \in Q$ iff there exists a y such that $(w, y) \in P$. By Lemma 7.1, fix a tree T on $2 \times 2 \times 2$ such that $(w, y) \notin P$ iff:

$$(7.3) \quad \text{There is a } z \in 2^\omega \text{ which is not eventually 0 and } (w, y, z) \in [T].$$

We define, for each n, a function $g_n : 2^\omega \times 2^\omega \to 2$ as follows.

$$g_n(w, x) = \begin{cases} 1 & \text{if there exists a } k \in \omega \text{ and there exists an } n\text{-good } \\ \sigma = (\alpha, \beta, \gamma, \delta) \in (2 \times 2 \times \omega \times 2)^{<\omega} \text{ of length } k + 1 \\ \text{such that } x \in N_\sigma \text{ and } (w \upharpoonright k + 1, \alpha, \beta) \in T, \\ 0 & \text{otherwise.} \end{cases}$$

By Lemma 7.2, there are only finitely many N_σ's on which g_n is 1. So g_n is continuous.

We show below that these g_n's satisfy Lemma 2.2 for the given Q. Before giving a formal proof, let us point out the idea behind the definition of g_n. By (7.3) $w \notin Q$ iff for all y there is a z not eventually 0 with $(w, y, z) \in [T]$. The idea behind the definition of g_n is this: The fact that $g_n(w, x) = 1$ for $(n_i) \in \text{SI}$ corresponds to the existence of such a branch (w, y, z). For each n_i, the fact that $g_n(w, x) = 1$ determines a finite approximation $(\alpha, \beta) \in (2 \times 2)^{<\omega}$ to (y, z). The γ controls the length of (α, β). The (α, β)'s are not initial segments of (y, z), but they converge to (y, z) as $n_i \to \infty$; the δ controls the rate of convergence.

(a) \implies (b). Let $w \in Q$. Q is the projection of P, so choose a $y \in 2^\omega$ such that $(w, y) \in P$. Let $(n_i) \in \text{SI}$ be such that $\tau_{n_i} = y \upharpoonright i$. We show that for all $x \in 2^\omega$, $g_{n_i}(w, x) \to 0$, and thus prove that (b) holds.

Suppose this is not so. Then there is an $x \in 2^\omega$ and a subsequence (m_j) of (n_i) such that for all j, $g_{m_j}(w, x) = 1$. Consider the definition of g_{m_j}. Clearly for each j there is an m_j-good finite sequence σ_j which causes $g_{m_j}(w, x)$ to be 1. Since $x \in N_{\sigma_j}$, the σ_j's must all be compatible. So there is a $(y', z, u, v) \in 2^\omega \times 2^\omega \times \omega^\omega \times 2^\omega$, and for each j there is an $l_j \in \omega$ such that $\sigma_j = (y' \upharpoonright l_j + 1, z \upharpoonright l_j + 1, u \upharpoonright l_j + 1, v \upharpoonright l_j + 1)$. By definition of m_j-good and of the function g_{m_j}, this means:

(i) $u \upharpoonright l_j + 1$ is strictly increasing and $u(l_j) = t_{m_j}$.

(ii) $z(l_j) = v(l_j) = 1$.

(iii) If $p_j = \text{card}\{m \leq l_j : v(m) = 1\}$ then $y' \upharpoonright p_j = \tau_{m_j} \upharpoonright p_j$.

(iv) $(w \upharpoonright l_j + 1, y' \upharpoonright l_j + 1, z \upharpoonright l_j + 1) \in T$.

By definition of the sequence (n_i), $\text{length}(\tau_{n_i}) = i$; as (m_j) is a subsequence of (n_i), $t_{m_j} = \text{length}(\tau_{m_j}) \geq j$; hence (i) implies that $l_j \to \infty$. So (ii) implies that neither z nor v is eventually 0. Therefore $p_j \to \infty$; so by (iii) and the definition of (n_i), $y' = y$. But then, by (iv), $(w, y, z) \in [T]$ and z is not eventually 0. So by (7.3) $(w, y) \notin P$. But y was originally chosen so that $(w, y) \in P$.

(b) \implies (a). Let $w \in 2^\omega \setminus Q$, and fix $(n_i) \in \text{SI}$. We show that there is an $x \in 2^\omega$ such that the sequence $(g_{n_i}(w, x))$ does not converge to 0. By passing to a subsequence if necessary, we may assume that $t_{n_i} = \text{length}(\tau_{n_i})$ is strictly increasing and that (τ_{n_i}) converges to some $y \in 2^\omega$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Since Q is the projection of P and $w \notin Q$, clearly $(w, y) \notin P$. By (7.3) there is a $z \in 2^\omega$ not eventually 0 such that $(w, y, z) \in [T]$. Define $u \in \omega^\omega$ by $u(i) = t_n$. Define $v : \omega \to 2$ by induction.

$$v(i) = \begin{cases} 1 & \text{if } z(i) = 1 \text{ and if we set } p = 1 + \text{card}\{m < i : v(m) = 1\}, \\ 0 & \text{then for all } j \geq i, \ y \restriction p = \tau_n \restriction p, \\ & \text{otherwise}. \end{cases}$$

Note that v is not eventually 0. For let i_0 be such that $v(i_0) = 1$ (or $i_0 = -1$), and let $p = 1 + \text{card}\{m \leq i_0 : v(m) = 1\}$. Since $\tau_n \to y$, there is a least $j_0 > i_0$ so that if $j \geq j_0$ then $\tau_n \restriction p = y \restriction p$. And since z is not eventually 0, there is a least $i_1 \geq j_0$ with $z(i_1) = 1$. But then $v(i) = 0$ for $i_0 < i < i_1$, and $v(i_1) = 1$.

Let $x \in \bigcap\{N_\sigma : \sigma < (y, z, w, t)\}$. To finish the proof it will suffice to show that for any j with $v(j) = 1$, $g_{n_j}(w, x) = 1$. Fix such a j. Let $\sigma_j = (y \restriction j + 1, z \restriction j + 1, u \restriction j + 1, v \restriction j + 1)$. The following three facts are direct consequences of the definitions of u and v.

(i) $u \restriction j + 1$ is strictly increasing and $u(j) = t_n$.

(ii) $z(j) = v(j) = 1$.

(iii) If $p = \text{card}\{m \leq j : v(m) = 1\}$ then $y \restriction p = \tau_n \restriction p$.

Now (i)–(iii) mean that σ_j is n_j-good. Clearly $x \in N_{\sigma_j}$. Since $(w, y, z) \in [T]$, clearly $(w \restriction j + 1, y \restriction j + 1, z \restriction j + 1) \in T$. So by definition of g_{n_j}, $g_{n_j}(w, x) = 1$. □

8. Proof of Lemma 4.3

We can view points t in $T = \mathbb{R}/2\pi\mathbb{Z}$ as being members of 2^ω, by writing the real number $t/2\pi$ in base 2. Formally, let $f : 2^\omega \to T$ be the function

$$f(x) = 2\pi \cdot \sum_{i=0}^{\infty} x(i) \cdot 2^{-(i+1)}.$$

Thus multiplication by 2, in T, corresponds to the operation of removing the first coordinate, in 2^ω. We use the following lemma, which is elementary.

Lemma 8.1. Let $I \subset T$ be an interval of length $2\pi/s$, and let m be a positive integer. Let p be the integer part of $\log_2(m)$ and let q be the integer part of $\log_2(s)$. For any $\sigma : p \to 2$ there exists a $\tau : (p + q + 3) \to 2$ such that $\sigma < \tau$, and such that for any $y \in 2^\omega$, if $\tau < y$ then $m \cdot f(y) \in I$.

Fix a sequence $[a(n), b(n)]$ of intervals in ω such that:

(i) $a(n + 1) > b(n)$.

(ii) $b(n) - a(n) \to \infty$.

(iii) $a(n + 1) - b(n) \to \infty$.

For $x \in 2^\omega$, let

$$E_x = \{y \in 2^\omega : \text{For all } n, \text{ if } x(n) = 0 \text{ then for all } c \in [a(n), b(n)], \ y(c) = 0\}.$$

For $K \in \mathcal{H}(2^\omega)$, let $\hat{K} = \bigcup\{E_x : x \in K\}$.

To prove Lemma 4.3, let $h : \mathcal{H}(2^\omega) \to \mathcal{H}(T)$ be the following function: $h(K) = f[\hat{K}]$. It is easy to see that $h(K)$ is compact and h is continuous.
Proof of Lemma 4.3(a). Let \(K \in Z \). Then there is a sequence \((p_n)\) of projection functions which converges to 0 pointwise on \(K \). For \(j \in \omega \), let \(L_j = \{y \in 2^\omega : \text{For all } i \geq j \text{ and all } c \in [a(n_i), b(n_i)], \ y(c) = 0\} \), let \(M_j = f[L_j] \) and let \(M = \bigcup_j M_j \). If \(x \in K \) then there is a \(j \) such that for all \(i \geq j \), \(p_n(x) = 0 \); hence if \(y \in \tilde{K} \), there is a \(j \) such that \(y \in L_j \). That is, \(h(K) \subseteq M \). So to prove Lemma 4.3(a), all that remains to be shown is that \(M \in D \uparrow \).

Clearly \(M_j \subseteq T \) is compact and \(M_j \subseteq M_{j+1} \). Fix \(j \). We show that \(M_j \) is a \(D \)-set. By definition of \(L_j \), if \(t \in M_j \) then for \(i > j \):

\[
|2^{a(n_i)}t| \leq 2^{-(b(n_i)-a(n_i))}.
\]

Hence by (8.2)(ii), the sequence \((\sin 2^{a(n_i)}t)\) converges to 0 uniformly on \(M_j \).

Proof of Lemma 4.3(b). Let \(K \in \mathcal{H}(2^\omega) \setminus Z \) and let \(M \in H \uparrow \). We show that \(h(K) \neq M \). Suppose \(M = \bigcup_i M_i \), where \(M_i \in \mathcal{H}(T) \) is an \(H \)-set and \(M_i \subseteq M_{i+1} \). Also suppose that \(I_i \) is an interval of \(T \) and \(v_i \) is a strictly increasing sequence of positive integers such that \(I_i \) and \(v_i \) witness that \(M_i \) is an \(H \)-set; that is, for all \(j \), \(v_i(j) \cdot M_i \cap I_i = \emptyset \). To show that \(h(K) \neq M \), it will suffice to prove the following fact: There is a \(t \in h(K) \) such that for infinitely many \(i \)'s there is some \(m_i = v_i(j_i) \) for which \(m_i t \in I_i \).

Let \(p(i, j) \) be the integer part of \(\log_2(v_i(j)) \) and let \(q(i) \) be the integer part of \(\log_2(s_i) \), where \(2\pi/s_i \) is the length of \(I_i \). We inductively define strictly increasing functions \(i \mapsto j_i \) and \(i \mapsto n_i \) such that the intervals

\[
I_i = [p(i, j_i), p(i, j_i) + q(i) + 2]
\]

satisfy the following two properties.

\begin{align}
(8.3) \quad & (i) \max(J_i) < \min(J_{i+1}). \\
& (ii) J_i \subseteq [b(n_{i-1}) + 1, a(n_{i+1}) - 1].
\end{align}

That is, \(J_i \) intersects at most one of the intervals of (8.2), namely \([a(n_i), b(n_i)]\). This is clearly possible by (8.2)(iii) and the fact that \(\lim_{j \to \infty} p(i, j) = \infty \). Let \(m_i = v_i(j_i) \). By Lemma 8.1, if \(\sigma_i \in 2^{<\omega} \) is defined on numbers less than \(\min(J_i) \), then there is a \(\tau_i \in 2^{<\omega} \) extending \(\sigma_i \) and defined on numbers less than or equal to \(\max(J_i) \), such that for any \(y \in 2^\omega \) with \(\tau_i < y \), \(m_i \cdot f(y) \in I_i \). Hence for any \(B \subseteq \omega \) there is a \(y \in 2^\omega \) with the following property. For all \(i \in B \), \(m_i \cdot f(y) \in I_i \), and for all \(c \notin \bigcup \{J_i : i \in B\} \), \(y(c) = 0 \).

Since \(K \notin Z \), there is an \(x \in K \) such that \(B = \{i : x(n_i) = 1\} \) is infinite. Fix such an \(x \) and \(B \). Choose a \(y \) with the above property, for this particular \(B \). Let \(t = f(y) \). Then for infinitely many \(i \), \(m_i t \in I_i \). So to complete the proof of Lemma 4.3, all we need to show is that \(t \in h(K) \). If \(c \notin \bigcup \{J_i : i \in B\} \), then \(y(c) = 0 \). By (8.3), if \(n \notin \{n_i : i \in B\} \) then for all \(c \in [a(n), b(n)] \), \(y(c) = 0 \). This ensures that \(y \in E_x \). Hence \(y \in \tilde{K} \) and \(t \in h(K) \). \(\square \)

The function \(h \) in the above proof is not one-to-one. In order to prove Theorem 5.4 we need to modify the proof of Lemma 4.3 to get a one-to-one
This can be done as follows. Let $h_1 : \mathcal{H}(2^\omega) \to \mathcal{H}([0, \pi])$ be the function $h_1(K) = h(K) \cap [0, \pi]$. As is clear from the proof of Lemma 4.3(a), there is an $F \subset (\pi, 2\pi)$ such that F is homeomorphic to 2^ω and the sequence $(\sin 2n\alpha)$ converges to 0 on F. $\mathcal{H}(2^\omega)$ is also homeomorphic to 2^ω. Let $h_2 : \mathcal{H}(2^\omega) \to F$ be a homeomorphism. Then let

$$h'(K) = h_1(K) \cup \{h_2(K)\}.$$

Acknowledgment

Some of the results in this paper were obtained while the first and third author were at the Mathematical Sciences Research Institute, in the spring of 1990. They wish to thank MSRI and the organizers of the logic year for their support.

References

21. V. V. Nemytzkii, *On certain classes of linear sets in connection with the absolute convergence of trigonometric series* (in Russian with French summary), Mat. Sb. 33 (1926), 5–32.

(H. Becker) *Department of Mathematics, University of South Carolina, Columbia, South Carolina 29208*

E-mail address: becker@cs.sc.edu

(S. Kahane and A. Louveau) *Equipe d'Analyse, Université Paris VI, 4, Place Jussieu, 75230 Paris, Cedex 05, France*

E-mail address: syk@frunip62.bitnet

E-mail address: louveau@frunip62.bitnet