Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

The Koebe semigroup and a class of averaging operators on $ H\sp p({\bf D})$


Author: Aristomenis G. Siskakis
Journal: Trans. Amer. Math. Soc. 339 (1993), 337-350
MSC: Primary 47B38; Secondary 30D55, 47D03
DOI: https://doi.org/10.1090/S0002-9947-1993-1147403-9
MathSciNet review: 1147403
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study on the Hardy space $ {H^p}$ the operators $ {T_F}$ given by

$\displaystyle {T_F}(f)(z) = \frac{1} {z}\int_0^z {f(\zeta )\frac{1} {{F(\zeta )}}\;d\zeta } $

where $ F(z)$ is analytic on the unit disc $ \mathbb{D}$ and has $ \operatorname{Re} F(z) \geq 0$. Each such operator is closely related to a strongly continuous semigroup of weighted composition operators. By studying first an extremal such semigroup (the Koebe semigroup) we are able to obtain the upper bound $ {\left\Vert {{T_F}} \right\Vert _p} \leq 2p\operatorname{Re} (1/F(0)) + \vert\operatorname{Im} (1/F(0))\vert$ for the norm. We also show that $ {T_F}$ is compact on $ {H^p}$ if and only if the measure $ \mu $ in the Herglotz representation of $ 1/F$ is continuous.

References [Enhancements On Off] (What's this?)

  • [1] A. Aleman, Compactness of resolvent operators generated by a class of composition semigroups on $ {H^p}$, J. Math. Anal. Appl. 147 (1990), 171-179. MR 1044693 (91b:47062)
  • [2] -, Personal communication, 1990.
  • [3] E. Berkson and H. Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), 101-115. MR 0480965 (58:1112)
  • [4] C. Carathéodory, Theory of functions of a complex variable. II, Chelsea, New York, 1954.
  • [5] C. C. Cowen, Subnormality of the Cesàro operator and a semigroup of composition operators, Indiana Univ. Math. J. 33 (1984), 305-318. MR 733903 (86g:47034)
  • [6] J. A. Deddens, Analytic Toeplitz and composition operators, Canad. J. Math. 24 (1972), 859-865. MR 0310691 (46:9789)
  • [7] P. L. Duren, Theory of $ {H^p}$ spaces, Pure and Appl. Math., vol. 38, Academic Press, New York and London, 1970. MR 0268655 (42:3552)
  • [8] -, Univalent functions, Springer-Verlag, New York and Berlin, 1983. MR 708494 (85j:30034)
  • [9] J. A. Goldstein, Semigroups of linear operators and applications, Oxford Univ. Press, London and New York, 1985 MR 790497 (87c:47056)
  • [10] K. Hoffman, Banach spaces of analytic functions, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 0133008 (24:A2844)
  • [11] T. L. Kriete and D. Trutt, The Cesàro operator on $ {l^2}$ is subnormal, Amer. J. Math. 93 (1971), 215-225. MR 0281025 (43:6744)
  • [12] B. D. MacCluer and J. H. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergmann spaces, Canad. J. Math. 38 (1986), 878-906. MR 854144 (87h:47048)
  • [13] Ch. Pommerenke, On the angular derivative and univalence, Anal. Math. 3 (1977), 291-297. MR 0463415 (57:3367)
  • [14] J. H. Shapiro, The essential norm of a composition operator, Ann. of Math. (2) 125 (1987), 375-404. MR 881273 (88c:47058)
  • [15] A. G. Siskakis, Composition semigroups and the Cesàro operator on $ {H^p}$, J. London Math. Soc. (2) 36 (1987), 153-164. MR 897683 (89a:47048)
  • [16] -, On a class of composition semigroups in Hardy spaces, J. Math. Anal. Appl. 127 (1987), 122-129. MR 904214 (89d:47093)
  • [17] -, Weighted composition semigroups on Hardy spaces, Linear Algebra Appl. 84 (1986), 359-371. MR 872296 (88b:47058)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B38, 30D55, 47D03

Retrieve articles in all journals with MSC: 47B38, 30D55, 47D03


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1147403-9
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society