Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Reflecting Brownian motion in a cusp


Authors: R. Dante DeBlassie and Ellen H. Toby
Journal: Trans. Amer. Math. Soc. 339 (1993), 297-321
MSC: Primary 60J60; Secondary 60H99, 60J65
DOI: https://doi.org/10.1090/S0002-9947-1993-1149119-1
MathSciNet review: 1149119
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ C$ be the cusp $ \{ (x,y):x \geq 0$, $ - {x^\beta } \leq y \leq {x^\beta }\} $ where $ \beta > 1$. Set $ \partial {C_1} = \{ (x,y):x \geq 0, y = - {x^\beta }\} $ and $ \partial {C_2} = \{ (x,y):x \geq 0$, $ y = {x^\beta }\} $. We study the existence and uniqueness in law of reflecting Brownian motion in $ C$. The angle of reflection at $ \partial {C_j}\backslash \{ 0\} $ (relative to the inward unit normal) is a constant $ {\theta _j} \in \left( { - \frac{\pi } {2},\frac{\pi } {2}} \right)$, and is positive iff the direction of reflection has a negative first component in all sufficiently small neighborhoods of 0. When $ {\theta _1} + {\theta _2} \leq 0$, existence and uniqueness in law hold. When $ {\theta _1} + {\theta _2} > 0$, existence fails. We also obtain results for a large class of asymmetric cusps. We make essential use of results of Warschawski on the differentiability at the boundary of conformal maps.


References [Enhancements On Off] (What's this?)

  • [1] R. D. DeBlassie, Explicit semimartingale representation of Brownian motion in a wedge, Stochastic Process. Appl. 34 (1990), 67-97. MR 1039563 (91h:60091)
  • [2] K. Burdzy and D. Marshall, Hitting a boundary point with reflected Brownian motion, (1990), preprint. MR 1231985 (94g:60151)
  • [3] L. C. G. Rogers, Brownian motion in a wedge with variable skew reflection, Trans. Amer. Math. Soc. 326 (1991), 227-236. MR 1008701 (91j:60136)
  • [4] -, Brownian motion in a wedge with variable skew reflection. II, Proc. Evanston Conf. (1990), (to appear). MR 1110159 (92f:60142)
  • [5] L. C. G. Rogers and D. Williams, Diffusions, Markov processes, and martingales, Vol. 2: Itô calculus, Wiley, Chichester, 1987. MR 921238 (89k:60117)
  • [6] D. W. Stroock and S. R. S. Varadhan, Diffusion processes with boundary conditions, Comm. Pure. Appl. Math. 24 (1971), 147-225. MR 0277037 (43:2774)
  • [7] D. W. Stroock and S. R. S. Varadhan, Multidimensional diffusion processes, Springer-Verlag, New York, 1979. MR 532498 (81f:60108)
  • [8] S. R. S. Varadhan and R. J. Williams, Brownian motion in a wedge with oblique reflection, Comm. Pure Appl. Math. 38 (1985), 405-443. MR 792398 (87c:60066)
  • [9] E. Warschawski, On conformal mapping of infinite strips, Trans. Amer. Math. Soc. 51 (1942), 280-335. MR 0006583 (4:9b)
  • [10] -, On differentiability at the boundary of a conformal mapping, Proc. Amer. Math. Soc. 12 (1961), 614-620. MR 0131524 (24:A1374)
  • [11] R. J. Williams, Recurrence classification and invariant measure for reflected Brownian motion in a wedge, Ann. Probab. 13 (1985), 758-778. MR 799421 (86m:60201)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 60J60, 60H99, 60J65

Retrieve articles in all journals with MSC: 60J60, 60H99, 60J65


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1149119-1
Keywords: Brownian motion with skew reflection, cusp, conformai transformation, differentiability at the boundary
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society