-manifolds which admit finite group actions

Author:
Shi Cheng Wang

Journal:
Trans. Amer. Math. Soc. **339** (1993), 191-203

MSC:
Primary 57M60; Secondary 57M50, 57N10

MathSciNet review:
1169084

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove several results which support the following conjectures: Any smooth action of a finite group on a geometric -manifold can be conjugated to preserve the geometric structure. Every irreducible closed -manifold with infinite is finitely covered by a Haken -manifold.

**[B]**Glen E. Bredon,*Introduction to compact transformation groups*, Academic Press, New York-London, 1972. Pure and Applied Mathematics, Vol. 46. MR**0413144****[BM]**John W. Morgan and Hyman Bass (eds.),*The Smith conjecture*, Pure and Applied Mathematics, vol. 112, Academic Press, Inc., Orlando, FL, 1984. Papers presented at the symposium held at Columbia University, New York, 1979. MR**758459****[E]**Allan L. Edmonds,*Transformation groups and low-dimensional manifolds*, Group actions on manifolds (Boulder, Colo., 1983) Contemp. Math., vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp. 339–366. MR**780973**, 10.1090/conm/036/780973**[G]**Marvin J. Greenberg,*Lectures on algebraic topology*, W. A. Benjamin, Inc., New York-Amsterdam, 1967. MR**0215295****[Ha]**Joel Hass,*Surfaces minimizing area in their homology class and group actions on 3-manifolds*, Math. Z.**199**(1988), no. 4, 501–509. MR**968316**, 10.1007/BF01161639**[H1]**John Hempel,*3-Manifolds*, Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1976. Ann. of Math. Studies, No. 86. MR**0415619****[H2]**John Hempel,*Orientation reversing involutions and the first Betti number for finite coverings of 3-manifolds*, Invent. Math.**67**(1982), no. 1, 133–142. MR**664329**, 10.1007/BF01393377**[H3]**John Hempel,*Branched covers over strongly amphicheiral links*, Topology**29**(1990), no. 2, 247–255. MR**1056273**, 10.1016/0040-9383(90)90011-8**[Ki]**Kiang Tsai-han,*The theory of fixed point classes*, Translated from the second Chinese edition, Springer-Verlag, Berlin; Science Press, Beijing, 1989. MR**1002187****[K]**Sadayoshi Kojima,*Finite covers of 3-manifolds containing essential surfaces of Euler characteristic =0*, Proc. Amer. Math. Soc.**101**(1987), no. 4, 743–747. MR**911044**, 10.1090/S0002-9939-1987-0911044-9**[L]**John Luecke,*Finite covers of 3-manifolds containing essential tori*, Trans. Amer. Math. Soc.**310**(1988), no. 1, 381–391. MR**965759**, 10.1090/S0002-9947-1988-0965759-2**[MS]**William H. Meeks III and Peter Scott,*Finite group actions on 3-manifolds*, Invent. Math.**86**(1986), no. 2, 287–346. MR**856847**, 10.1007/BF01389073**[MSY]**William Meeks III, Leon Simon, and Shing Tung Yau,*Embedded minimal surfaces, exotic spheres, and manifolds with positive Ricci curvature*, Ann. of Math. (2)**116**(1982), no. 3, 621–659. MR**678484**, 10.2307/2007026**[R]**Dale Rolfsen,*Knots and links*, Publish or Perish, Inc., Berkeley, Calif., 1976. Mathematics Lecture Series, No. 7. MR**0515288****[S]**Peter Scott,*The geometries of 3-manifolds*, Bull. London Math. Soc.**15**(1983), no. 5, 401–487. MR**705527**, 10.1112/blms/15.5.401**[To]**Jeffery L. Tollefson,*Involutions of sufficiently large 3-manifolds*, Topology**20**(1981), no. 4, 323–352. MR**617370**, 10.1016/0040-9383(81)90018-5**[T1]**William P. Thurston,*Three-dimensional manifolds, Kleinian groups and hyperbolic geometry*, Bull. Amer. Math. Soc. (N.S.)**6**(1982), no. 3, 357–381. MR**648524**, 10.1090/S0273-0979-1982-15003-0**[T2]**-,*Geometry and topology on*-*manifolds*, preprint.**[T3]**-,*Three-manifolds with symmetry*, preprint.**[W1]**S. Wang,*Several results in*-*and*-*manifolds*, Thesis, UCLA, 1988.**[W2]**-,*The virtual*-*representibility of*-*manifolds which admit orientation reversing involution*, Proc. Amer. Math. Soc.**110**(1990), 497-501.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57M60,
57M50,
57N10

Retrieve articles in all journals with MSC: 57M60, 57M50, 57N10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1993-1169084-0

Article copyright:
© Copyright 1993
American Mathematical Society