Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



$ \Delta$-sets

Author: R. W. Knight
Journal: Trans. Amer. Math. Soc. 339 (1993), 45-60
MSC: Primary 54A35; Secondary 03E35, 54D20
MathSciNet review: 1196219
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A model of $ {\text{ZFC}}$ is constructed in which there exists a subset of the Moore plane that is countably paracompact but not normal. The method used in the construction is forcing using uncountable sets of finite partial functions, $ {\omega _1}$ and $ {\omega _2}$ are shown to be preserved using a fusion lemma.

References [Enhancements On Off] (What's this?)

  • [F] W. G. Fleissner, Current research on $ Q$-sets, Topology, Colloq. Math. Soc. János Bolyai, 23, North-Holland, Amsterdam, 1980, pp. 413-431. MR 588793 (83j:03080)
  • [FM] W. G. Fleissner and A. W. Miller, On $ Q$-sets, Proc. Amer. Math. Soc. 78 (1980), 280-284. MR 550513 (81i:03077)
  • [J] T. Jech, Multiple forcing, Cambridge Univ. Press, Cambridge, 1986. MR 895139 (89h:03001)
  • [JP] T. Jech and K. Prikry, Cofinality of the partial ordering of functions from $ {\omega _1}$ to $ \omega $ under eventual domination, Math. Proc. Cambridge Philos. Soc. 95 (1984), 25-32. MR 727077 (85b:03084)
  • [K] R. W. Knight, Generalized tangent-disc spaces and $ Q$-sets, Thesis, Univ. of Oxford, 1989.
  • [L] R. Laver, On the consistency of Borel's conjecture, Acta Math. 137 (1976), 151-169. MR 0422027 (54:10019)
  • [Lu] D. J. Lutzer, Pixley-Roy topology, Topology Proc. 3 (1978), 139-158. MR 540485 (80m:54012)
  • [P] T. C. Przymusiński, Normality and separability of Moore spaces, Set-Theoretic Topology, Academic Press, New York, 1977, pp. 325-337. MR 0448310 (56:6617)
  • [R] G. M. Reed, On normality and countable paracompactness, Fund. Math. 110 (1980), 145-152. MR 600588 (82d:54033)
  • [S] J. Steprāns, Some results in set theory, Ph. D. Thesis, Univ. of Toronto, 1982.
  • [T] H. Tanaka, Pixley-Roy hyperspaces, Fund. Math. 126 (1986), 201-208. MR 882429 (89a:54036)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 54A35, 03E35, 54D20

Retrieve articles in all journals with MSC: 54A35, 03E35, 54D20

Additional Information

Keywords: Countably paracompact, normal, Moore space, forcing, Fusion Lemma
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society