ZEROS OF THE SUCCESSIVE DERIVATIVES OF HADAMARD GAP SERIES

ROBERT M. GETHNER

Abstract. A complex number z is in the final set of an analytic function f, as defined by Pólya, if every neighborhood of z contains zeros of infinitely many $f^{(n)}$. If f is a Hadamard gap series, then the part of the final set in the open disk of convergence is the origin along with a union of concentric circles.

1. Introduction

A complex number z is in the final set $\Lambda(f)$ of an analytic function f if every neighborhood of z contains zeros of infinitely many $f^{(n)}$. Final sets of various functions have been determined by Pólya [4, 5] (who introduced the notion) and others (see [2] for references). A power series

$$f(z) = \sum_{k=0}^{\infty} c_k z^k,$$

with $c_k \neq 0$ for all k, has Hadamard gaps if there exists $L > 1$ such that

$$N_{k+1}/N_k > L \quad \text{for all } k \geq 0.$$

Theorem 1. Let f be a function whose Maclaurin series has Hadamard gaps and (finite or infinite) radius of convergence R. Then $\Lambda(f) \cap \{|z| < R\} = \{0\} \cup \{|z| : |z| \in E\}$, where E is closed in the topology of $(0, R)$.

Theorem 1 is best possible in the following sense.

Theorem 2. Let R be in $(0, \infty]$, and let E be closed in the topology of $(0, R)$. Then there exists a Hadamard gap series f with radius of convergence R such that $\Lambda(f) \cap \{|z| < R\} = \{0\} \cup \{|z| : z \in E\}$.

I am grateful to L. R. Sons and W. H. J. Fuchs for advice and encouragement.

2. Proof of Theorem 1

The proof of Theorem 1 depends on two lemmas, which I will prove in §§3 and 4, respectively, concerning functions h of the form

$$h(z) = \sum_{k=0}^{\infty} a_k z^k.$$
Fix such an \(h \) and denote by \(R \) the radius of convergence of the series. Set
\[
\mu(r) = \max\{|a_k|r^{n_k} : k \geq 0\}, \quad \nu(r) = \max\{k : |a_k|r^{n_k} = \mu(r)\}.
\]
(This notation is not standard; see [6, p. 3].) Finally, call a number \(r \) in \((0, R)\) \(h \)-dominant if
\[
\sum_{k=0}^{\nu(r)-1} |a_k|r^{n_k} + \sum_{k=\nu(r)+1}^{\infty} n_k^{\nu(r)}|a_k|r^{n_k} < \mu(r),
\]
where the first sum is taken to be zero if \(\nu(r) = 0 \).

The first lemma is an adaptation of [3, Theorem 6, p. 605]. Denote by \(Z(s, t, \theta_1, \theta_2) \) the number of zeros (counting multiplicity) of \(h \) in the set \(\{re^{i\theta} : s \leq r \leq t \text{ and } \theta_1 \leq \theta \leq \theta_2\} \).

Lemma 1. Let \(h \) have the form (2.1) (not necessarily with Hadamard gaps), and let \(R, \mu(r), \) and \(\nu(r) \) be as above. If \(s \) and \(t \) are \(h \)-dominant, if \(s < t \), and if \(0 < \theta_2 - \theta_1 < 2\pi \), then
\[
\frac{1}{2\pi} \left| Z(s, t, \theta_1, \theta_2) - \left(n_{\nu(t)} - n_{\nu(s)}\right) \frac{\theta_2 - \theta_1}{2\pi}\right| < \nu(t) + 2.
\]

Lemma 2. Let \(h \) and \(R \) be as in Lemma 1, and suppose that there exists \(L > 1 \) such that \(n_{k+1}/n_k > L \) for all \(k \geq 0 \). Suppose also that
\[
n_0 \geq \max\{9, \exp[\sqrt{(\log 6) \log L}]\}.
\]
Define
\[
\tau = 54e^{-2}/(\log L)(1 - 1/L)(1 - L^{-1/3}).
\]
Then there is at least one \(h \)-dominant point in each interval \((C, D) \subset (0, R)\) such that
\[
\log(D/C) > \tau/n_0^{1/3}.
\]

Proof of Theorem 1. \(0 \in \Lambda(f) \) by (1.2).

Define \(h_j, a_k = a_k(j), \) and \(n_k = n_k(j) \) by
\[
h_j(z) = z^j f^{(j)}(z) = \sum_{k=0}^{\infty} a_k z^{n_k}.
\]

Then by (1.2),
\[
\begin{align*}
(a) & \quad n_{k+1}/n_k > L > 1, \quad (b) \quad n_0 \geq j.
\end{align*}
\]

Define a set \(E \subset (0, R) \) as follows: \(r^* \in E \) if there exist an infinite set \(T \) of positive integers and a sequence \(\{r_j\}_{j \in T} \) such that
\[
\begin{align*}
(a) & \quad \lim_{j \to \infty, j \in T} r_j = r^*, \quad (b) \quad \text{no } r_j \text{ is } h_j \text{-dominant}.
\end{align*}
\]

I will show that if \(r^* \in E \) then \(\{|z| = r^*\} \subset \Lambda(f) \), whereas if \(r^* \notin E \) then \(\{|z| = r^*\} \cap \Lambda(f) \) is empty.

Case I. \(r^* \in E \). Choose \(\{r_j\} \) as above and define \(\tau \) by (2.5). By (2.8b) and (2.9a), \(r_j \exp\{2\tau/n_0^{1/3}\} < R \) for all large \(j \) in \(T \). Pick such a \(j > \max\{9, \exp[\sqrt{(\log 6) \log L}]\} \). By Lemma 2, there are \(h_j \)-dominant points \(s = s(j) \) in \((r_j \exp\{-2\tau/n_0^{1/3}\}, r_j)\) and \(t = t(j) \) in \((r_j, r_j \exp\{2\tau/n_0^{1/3}\})\).
Then
\[(2.10) \quad \nu(s, h_j) < \nu(t, h_j). \]

For suppose that \(\nu(s) = \nu(t) \equiv p \), and set
\[
\psi(r) = \frac{1}{|a_p|r^{n_p}} \left(\sum_{k=0}^{p-1} |a_k|^n_k + \sum_{k=p+1}^{\infty} n_k^p |a_k|r^{n_k} \right).
\]

Then \(\psi(s) < 1 \) and \(\psi(t) < 1 \) by (2.3). Hence \(\psi(r_j) < 1 \) since \(\psi \) is convex [7, p. 172]. Thus \(r_j \) is \(h_j \)-dominant, contrary to the definition of \(r_j \). This proves (2.10).

Put
\[
U_j(\theta_1, \theta_2) = \{ re^{i\theta} : r_j \exp(-2\pi/n_0^{1/3}) \leq r \leq r_j \exp(2\pi/n_0^{1/3}) \text{ and } \theta_1 \leq \theta \leq \theta_2 \}.
\]

I will show that, if \(j \) is sufficiently large, then
\[(2.11) \quad h_j \text{ has at least one zero in } U_j(\theta_1, \theta_2) \text{ whenever } \theta_2 - \theta_1 > 6\pi L^{-j}/(1 - L^{-1}). \]

For \(xL^{-x} \downarrow \) for large \(x \), so that, when \(j \leq k \), (2.8) and (2.10) give \(k/n_k < kL^{-k}/j \leq L^{-j} \) and \((n_\nu(t) - n_\nu(s))/n_\nu(t) > 1 - L^{-[\nu(t) - \nu(s)]} \geq 1 - L^{-1} \); thus, by Lemma 1, the number of zeros in \(U_j(\theta_1, \theta_2) \) is at least
\[
Z(s, t, \theta_1, \theta_2) \geq (n_\nu(t) - n_\nu(s)) \frac{\theta_2 - \theta_1}{2\pi} \frac{\theta_2 - \theta_1}{2\pi} > 0,
\]
which establishes (2.11).

Now by (2.9a) and (2.8b), \(r_j \exp(-2\pi/n_0^{1/3}) \to r^* \) and \(r_j \exp(2\pi/n_0^{1/3}) \to r^* \) as \(j \to \infty \) in \(T \). Thus (2.11) implies that every point of \(\{ |z| = r^* \} \) is a limit point of zeros of \(\{ h_j \}_{j \in T} \), so that, by (2.7), \(\{ |z| = r^* \} \subseteq \Lambda(f) \).

Case II. \(r^* \notin E \). For all large \(j \) and small \(\varepsilon \), \(r \) is \(h_j \)-dominant for \(r \) in \(I \equiv (r^* - \varepsilon, r^* + \varepsilon) \). So by (2.3),
\[
|h_j(z)| \geq \mu(r, h_j) - \sum_{k=0}^{\nu(r, h_j)-1} |a_k|r^{n_k} - \sum_{k=\nu(r, h_j)+1}^{\infty} |a_k|r^{n_k} > 0,
\]
whenever \(|z| = r \in I \). This completes the proof of Theorem 1.

3. Proof of Lemma 1

We need two more lemmas. The first is a variation on [6, Problem 66, p. 45]; the second is an adaptation of [3, Lemma 7]. Let \(D \) denote differentiation.

Lemma 3. Let \(J \equiv (a, b) \subset \mathbb{R}^+ \), let \(g : J \to \mathbb{C} \) be differentiable, and let \(\alpha \in \mathbb{Z}^+ \). If \(\text{Im}\{g\} \) changes sign at least twice in \(J \), then \(\text{Im}\{(rD - \alpha)g\} \) changes sign there at least once.

Proof. For real \(r \),
\[
\text{Im}\{(rD - \alpha)g(r)\} = \text{Im}\left\{ r^{\alpha+1} \frac{d}{dr}[r^{-\alpha}g(r)] \right\} = r^{\alpha+1} \frac{d}{dr}[r^{-\alpha} \text{Im}\{g(r)\}],
\]
and the lemma follows from Rolle's Theorem.
For a function H analytic on a contour C, denote by $\Delta(H, C)$ the variation over C of any continuous branch of $\arg H$.

Lemma 4. Let h have the form (2.1) with radius of convergence R, let $[s, t] \subset (0, R)$, and suppose that t is h-dominant. Set $I = I(\theta) = \{re^{i\theta} : s \leq r \leq t\}$. If $h \neq 0$ on I, then $|\Delta(h, I)| \leq \pi [\nu(t) + 1]$.

Proof. We may assume that $\theta = 0$. Set $q = \nu(t)$. Choose ϕ so that $e^{i\phi}a_q$ is positive imaginary, and put

$$H(r) = e^{i\phi}(rD - n_0)(rD - n_1)\cdots(rD - n_{q-1})h(r) \equiv \sum_{k=n_q}^{\infty} b_k r^{n_k},$$

where

$$b_k = (n_k - n_0)(n_k - n_1)\cdots(n_k - n_{q-1})e^{i\phi}a_k.$$

I claim that $\text{Im}\{H\}$ does not change sign in (s, t). If the claim is correct, then q applications of Lemma 3 show that $\text{Im}\{h\}$ changes sign at most q times in (s, t), so that the curve $h(I)$ crosses the real axis at most q times. Therefore $|\Delta(h, I)| \leq \pi (q + 1)$, and the lemma follows.

To prove the claim, pick r in (s, t) and set

$$\psi(r) = \frac{1}{|b_q|r^{n_q}} \left(\sum_{k=n_{q+1}}^{\infty} |b_k|r^{n_k} \right).$$

We have $|b_k| \leq n^q_k|a_k|$ and $|b_q| \geq |a_q|$ by (3.2). Thus, since t is h-dominant and $q = \nu(t)$, (2.3) gives

$$\psi(t) \leq \frac{1}{|a_q|r^{n_q}} \left(\sum_{k=n_{q+1}}^{\infty} n^q_k|a_k|t^{n_k} \right) = \frac{1}{\mu(t)} \left(\sum_{k=n_{\nu(t)+1}}^{\infty} n^{\nu(t)}_k|a_k|t^{n_k} \right) < 1.$$

Now ψ increases, so, by (3.1),

$$|H(r) - b_q r^{n_q}| \leq \sum_{k=q+1}^{\infty} |b_k|r^{n_k} = \psi(r)|b_q|r^{n_q} < |b_q|r^{n_q}.$$

But our choice of ϕ makes $b_q r^{n_q}$ positive imaginary, so that $H(r)$ is in the upper half-plane. This establishes the claim and Lemma 4.

Proof of Lemma 1. Let $\Gamma = I_1 \cup C_1 \cup I_2 \cup C_s$, where $I_1 = \{re^{i\theta_1} : s \leq r \leq t\}$, $I_2 = \{re^{i\theta_2} : s \leq r \leq t\}$, $C_s = \{se^{i\theta_2} : \theta_1 \leq \theta \leq \theta_2\}$, and $C_t = \{te^{i\theta_1} : \theta_1 \leq \theta \leq \theta_2\}$. Also put $P(z) = a_{\nu(s)}z^{\nu(s)}$ and $Q(z) = a_{\nu(t)}z^{\nu(t)}$.

First assume that $h \neq 0$ on Γ. Then

$$\Delta(h, \Gamma) - \Delta(P, C_s) - \Delta(Q, C_t) = \Delta(h/P, C_s) + \Delta(h/Q, C_t) + \Delta(h, I_1) + \Delta(h, I_2).$$

Also, (2.3) gives $|h(z)/P(z) - 1| < 1$, and hence $\text{Re}\{h(z)/P(z)\} > 0$, for $z \in C_s$. So $|\Delta(h/P, C_s)| \leq \pi$. Similarly, $|\Delta(h/Q, C_t)| \leq \pi$. Thus, by (3.3) and Lemma 4,

$$|\Delta(h, \Gamma) - (n_{\nu(t)} - n_{\nu(s)})(\theta_2 - \theta_1)| \leq 2\pi + 2\pi [\nu(t) + 1].$$
and Lemma 1 follows from the argument principle. If h has zeros on Γ, apply (3.4) to a nearby contour Γ' on which $h \neq 0$ and let $\Gamma' \to \Gamma$.

4. Proof of Lemma 2

Lemma 5. Let h, R, and L be as in Lemma 2, and let (2.4) hold. Pick $m \geq 0$ and $[A, B] \subset (0, R)$, and suppose that

\[|a_k|s^{nk} \leq |a_m|s^{nm} \quad \text{for all } k \geq 0 \text{ and } s \in [A, B] \]

and

\[\log \frac{B}{A} > \frac{6}{(\log L)(1 - 1/L)} \frac{(\log n_m)^2}{n_m} \]

Then there exists $r \in (A, B)$ such that (2.3) holds with $\nu(r) = m$.

Proof of Lemma 2. For each $m \geq 0$, set $I_m = \{r \geq 0 : |a_m|s^{nm} = \mu(r, h)\}$. Denote by (A, B) the interior of $I_m \cap (C, D)$. If (A, B) has no h-dominant points, then (4.2) must fail. Therefore, since $\bigcup I_m = \mathbb{R}^+$,

\[\log \frac{C}{D} = \int_{C}^{D} \frac{dx}{x} = \sum_{m=0}^{\infty} \int_{I_m \cap (C, D)} \frac{dx}{x} \]

\[\leq \frac{6}{(\log L)(1 - 1/L)} \sum_{m=0}^{\infty} \frac{(\log n_m)^2}{n_m} \]

Now $(\log x)x^{1/3} \leq 3/e$ for $x > 0$; also, $n_m^{1/3} > (Lm n_0)^{1/3}$ by (2.8a). Thus $(\log n_m)^2/n_m \leq 9e^{-2}n_m^{2/3}/n_m < 9e^{-2}(Lm n_0)^{-1/3}$. So by (4.3) and (2.5),

\[\log \frac{C}{D} \leq \frac{1}{n_0^{1/3}} \frac{6}{(\log L)(1 - 1/L)} \frac{9}{e^2} \sum_{m=0}^{\infty} L^{-m/3} = \frac{\tau}{n_0^{1/3}}. \]

But this contradicts (2.6), and the proof is complete.

Proof of Lemma 5. Set

\[\sigma = \exp\{(\log n_m)^2/(n_m \log L)\} \]

Then

\[\sigma > 1, \]

\[n_k^m \leq \sigma^n \quad \text{for all } k \geq m, \]

\[2\sigma^n \frac{\sigma(A/B)^{1/2}}{\nu}^{(1 - 1/L)n_m} < \frac{1}{3}, \quad \text{and} \quad \sigma(A/B)^{1/2} < 1. \]

Proof of (4.6). By (2.8a) and (2.4), $k < (\log n_k)/(\log L)$. Also, $(\log x)^2/x$ decreases for $x > e^2$. Hence, by (4.4),

\[m \log n_k \leq k \log n_k \leq \frac{(\log n_k)^2}{\log L} = \frac{(\log n_k)^2}{n_k} \frac{n_k}{\log L} \]

\[\leq \frac{(\log n_m)^2}{n_m} \frac{n_k}{\log L} = n_k \log \sigma. \]
Proof of (4.7). By (4.2) and (4.4), \((A/B)^{(1-1/L)n_m/2} < \sigma^{-3n_m}\). By (2.4), \(\sigma^{n_m} \geq \sigma^{n_0} \geq 6\). Therefore

\[
\{\sigma(A/B)^{1/2}\}^{(1-1/L)n_m} < \sigma^{(1-1/L)n_m-3n_m} < \sigma^{-n_m}\sigma^{-n_m} \leq \sigma^{-n_m/6}.
\]

This yields (4.7a), and (b) follows from (a) and (4.5).

We are now ready to prove (2.3) with \(\nu(r) = m\) and

\[
r = (AB)^{1/2}.
\]

When \(k \geq m + 1\), (2.8a) implies that

\[
n_k - n_m = \sum_{\gamma=m+1}^{k} (n_{\gamma} - n_{\gamma-1}) \geq \sum_{\gamma=m+1}^{k} (L-1)n_{\gamma-1} \geq (L-1)n_m(k-m).
\]

By (4.6), (4.1) with \(s = B\), and (4.8), and by (4.9), (which we may apply because of (4.7b)),

\[
n_k^m|a_k|r^{n_k} \leq |a_m|B^{n_m}\sigma(A/B)^{1/2}\chi_{n_m} \\
\leq |a_m|r^{n_m}\sigma^{n_m}\chi_{n_m}(A/B)^{1/2}\chi_{k-m}.
\]

Next, if \(0 \leq k < m - 1\), then (2.8a) gives

\[
n_k \leq n_m - n_{m-1} \leq n_m - (1 - 1/L)n_m.
\]

Thus, by (4.1) with \(s = A\) and (4.8),

\[
|a_k|r^{n_k} \leq |a_m|A^{n_m}\sigma(A/B)^{1/2}\chi_{n_m} \leq |a_m|r^{n_m}(A/B)^{1/2}(1-1/L)n_m.
\]

We have \(m \leq n_m \leq \sigma^{n_m}\) from (2.4) and (4.6). Also, \(L-1 > 1-1/L\) by (2.8a). Thus (4.11), (4.10), (4.5), and (4.7a) give

\[
\sum_{k=0}^{m-1} |a_k|r^{n_k} + \sum_{k=m+1}^{\infty} n_k^m|a_k|r^{n_k} \\
< |a_m|r^{n_m}\left\{m \left[\frac{A}{B}\right]^{1/2}\chi_{n_m} + \sigma^{n_m} \chi_{n_m} \left[\frac{\sigma(A/B)^{1/2}(1-1/L)n_m}{1 - \sigma(A/B)^{1/2}(1-1/L)n_m}\right]\right\} \\
\leq |a_m|r^{n_m}\left\{\frac{2\sigma^{n_m}}{\sigma(A/B)^{1/2}(1-1/L)n_m} \frac{1/3}{1 - 1/6} < |a_m|r^{n_m}.
\]

This yields (2.3) and completes the proof of Lemma 5.

5. PROOF OF THEOREM 2

The following construction is similar to that in [1].

Proof of Theorem 2. Pick positive sequences \(\{r_P\}_{P=0}^{\infty}, \{R_P\}_{P=0}^{\infty}, \) and \(\{\varepsilon_P\}_{P=0}^{\infty}\) so that

\[
\begin{align*}
&\text{(a) the set of limit points of } \{r_P\} \text{ in } (0, R) \text{ is } E, \\
&\text{(b) } r_pe^{\varepsilon_p} < R_P < R, \\
&\text{(c) } \varepsilon_P \to 0, \\
&\text{(d) } R_P \to R.
\end{align*}
\]

Choose a function \(\psi : \mathbb{Z}^+ \to \mathbb{R}^+\) such that

\[
[\psi(x)]^{1/x} \downarrow 1/R \text{ as } x \to \infty.
\]

Define \(f\) by (1.1), where \(\{c_k\}\) and \(\{N_k\}\) are defined inductively as follows.

Set

\[
\begin{align*}
&\text{(a) } N_0 = 3, \quad \text{(b) } c_{-1} = 1.
\end{align*}
\]
Having chosen $c_{-1}, \ldots, c_{2P-1} > 0$ and N_0, \ldots, N_{2P}, pick $c_{2P}, c_{2P+1}, N_{2P+1}, \text{ and } N_{2P+2}$ as follows. Using (5.2) and (5.1b), pick N_{2P+1} large enough so that
\begin{equation}
N_{2P+1} / N_{2P} > 2, \quad (b) \quad N_{2P+1}^{-N_{2P}} > (e^{-\varepsilon P/2})^{N_{2P+1} - N_{2P}},
\end{equation}
and
\begin{equation}
\begin{aligned}
N_{2P+1} \log \left(\frac{y_{2P+1}}{1+y_{2P+1}} \right) &> (e^{-\varepsilon})^{N_{2P+1} - N_{2P}}, \\
\left(\frac{y_{2P+1}}{1+y_{2P+1}} \right)^{N_{2P+1} - N_{2P}} &< c_{2P+1}^{1/N_{2P}}.
\end{aligned}
\end{equation}

Set
\begin{equation}
\begin{aligned}
(a) & \quad c_{2P+1} = \psi(N_{2P+1}), \\
(b) & \quad c_{2P} = c_{2P+1} r_{N_{2P+1} - N_{2P}}.
\end{aligned}
\end{equation}

Finally, pick N_{2P+2} large enough so that
\begin{equation}
N_{2P+2} / N_{2P+1} > 2, \quad (b) \quad 2N_{2P+1}^{2} \frac{\log N_{2P+2}}{N_{2P+3}} < 3.
\end{equation}

The function f just constructed satisfies
\begin{equation}
l_2P \psi(N_{2P+1}) \geq l_2P \psi(N_{2P+1}) \quad \text{for all } P \geq 0 \text{ and } k \geq 2P + 1.
\end{equation}

For odd k, (5.9) follows from (5.7a) and (5.2). If $k = 2Q$ is even, (5.9) follows from (5.7) and (5.6) (both with P replaced by Q):
\begin{equation}
c_{2Q}^{1/N_{2Q}} = (c_{2Q+1}^{1/N_{2Q+1}} r_{Q})^{N_{2Q+1} - N_{2Q}} < c_{2Q-1}^{1/N_{2Q-1}} \leq c_{2P}^{1/N_{2P}}.
\end{equation}

f has radius of convergence R by (5.7a), (5.2), and (5.9). By (1.1) and (5.8a),
\begin{equation}
0 \in \Lambda(f).
\end{equation}

We need the following lemma, proved at the end of the paper, to show that $\Lambda(f) \cap \{0 < |z| < R\} = \{z: |z| \in E\}$.

Lemma 6. Let f be as above, and define ϕ by
\begin{equation}
\phi_j(z) = \sum_{N_k \geq j} c_{N_k} N_{N_k} (N_k - 1) \cdots (N_k - j + 1) z^{N_k - j} \phi_{jN_k}(z).
\end{equation}

If $P \geq 0$, and if
\begin{equation}
\begin{aligned}
(a) & \quad j \leq N_{2P+1} \quad \text{and} \quad (b) \quad |z| \leq R_P,
\end{aligned}
\end{equation}
then
\begin{equation}
\sum_{k=2P+2}^{\infty} |\phi_{jN_k}(z)| \leq |\phi_j, 2P+1(z)| / 2.
\end{equation}

Proof that $\Lambda(f) \cap \{0 < |z| < R\} \subset \{z: |z| \in E\}$. By (5.1), it is enough to show that $f^{(j)}(z) \neq 0$ whenever either
\begin{equation}
j \in (N_{2P}, N_{2P+1}] \quad \text{and} \quad 0 < |z| \leq R_P
\end{equation}
or
\begin{equation}
j \in (N_{2P-1}, N_{2P}] \quad \text{and} \quad z \in \{0 < |z| \leq r_P e^{-\varepsilon P} \} \cup \{r_P e^{\varepsilon} \leq |z| \leq R_P\}.
\end{equation}

But if (5.13) holds, then (5.10) and (5.12) give
\begin{equation}
|f^{(j)}(z)| \geq |\phi_j, 2P+1(z)| - \sum_{k=2P+2}^{\infty} |\phi_{jN_k}(z)| \geq |\phi_j, 2P+1(z)| / 2 > 0.
\end{equation}
If \((5.14) \) holds, define

\[
G(j, P) = \frac{N_{2P}(N_{2P} - 1) \cdots (N_{2P} - j + 1)}{N_{2P+1}(N_{2P+1} - 1) \cdots (N_{2P+1} - j + 1)}.
\]

Then \(G(j, P) > 1/N_{2P+1}^j > N_{2P+1}^{-N_{2P}} \), so that, by \((5.4b) \),

\[
(5.16) \quad (e^{-\varepsilon_P/2})^{N_{2P+1} - N_{2P}} < G(j, P) < 1.
\]

Also, by \((5.10), (5.15) \), and \((5.7b) \),

\[
(5.17) \quad \left| \frac{\phi_j,2P(z)}{\phi_j,2P+1(z)} \right| = \frac{C_{2P}}{C_{2P+1}} G(j, P) |z|^{N_{2P} - N_{2P+1}} = G(j, P) \left(\frac{r_P}{|z|} \right)^{N_{2P+1} - N_{2P}}.
\]

If \(r_P e^{\varepsilon_P} \leq |z| \leq r_P \), then \(|\phi_j,2P(z)/\phi_j,2P+1(z)| < (e^{-\varepsilon_P})^{N_{2P+1} - N_{2P}} \leq 3^{-6} \) by \((5.17), (5.16), (5.4b) \), and \((5.3) \). Hence, by \((5.10) \) and \((5.12) \),

\[
|f^{(j)}(z)| \geq \phi_j,2P+1(z) - \sum_{k=2P+2}^{\infty} |\phi_j,k(z)| - |\phi_j,2P(z)|
\]

\[
\geq |\phi_j,2P+1(z)| - |\phi_j,2P+1(z)|/2 - |\phi_j,2P+1(z)|/3^6 > 0.
\]

Similarly, if \(0 < |z| < r_P e^{-\varepsilon_P} \), then

\[
|\phi_j,2P(z)/\phi_j,2P+1(z)| > (e^{\varepsilon_P/2})^{N_{2P+1} - N_{2P}} \geq 3^3
\]

and

\[
|f^{(j)}(z)| \geq |\phi_j,2P(z)| - \sum_{k=2P+2}^{\infty} |\phi_j,k(z)| - |\phi_j,2P(z)|
\]

\[
\geq |\phi_j,2P(z)| - \left(\frac{3}{2} \frac{1}{3^3} \right) |\phi_j,2P+1(z)| > 0.
\]

Proof that \(\{ z : |z| \in E \} \subset \Lambda(f) \). Fix \(P \) and set

\[
(5.18) \quad r = [G(2P, P)]^{1/(N_{2P+1} - N_{2P})} r_P.
\]

Then, by \((5.16) \),

\[
(5.19) \quad r \in (r_P e^{-\varepsilon_P}, r_P).
\]

Set \(h_j(z) = z^j f^{(j)}(z) \). For \(|z| = r \), we have

\[
|\phi_{2P,2P}(z)| = |\phi_{2P,2P+1}(z)| > \sum_{k=2P+2}^{\infty} |\phi_{2P,k}(z)|
\]

by \((5.18), (5.17) \), and \((5.12) \). Thus, by \((5.10) \) and \((2.2) \),

\[
\mu(r, h_2) = |z^{2P} \phi_{2P,2P}(z)| = |z^{2P} \phi_{2P,2P+1}(z)|.
\]

Therefore \(r \) violates the definition \((2.3) \) of \(h_{2P} \)-dominance. It now follows from \((5.19) \) and \((5.1a) \) that \(E \) is in the set of limit points of the points which are not \(h_{2P} \)-dominant. Thus \(\{ z : |z| \in E \} \subset \Lambda(f) \) by the paragraph containing \((2.9) \). This completes the proof of Theorem 2.

Proof of Lemma 6. Pick \(k \geq 2P + 2 \). By \((5.9) \) and \((5.7a) \),

\[
(5.20) \quad \log \frac{c_k}{C_{2P+1}} = \log c_k N_k - \frac{\log C_{2P+1}}{N_{2P+1}} N_{2P+1} \leq \frac{\log \psi(N_{2P+1})}{N_{2P+1}}.
\]
Also, \((\log x)/x\) decreases for \(x > N_{2P+1}\) by (5.3a). Thus, by (5.8),
\[
\frac{\log N_k}{N_k - N_{2P+1}} = \frac{N_{2P+1}}{1 - N_{2P+1}/N_k} \frac{\log N_k}{N_k} < \frac{N_{2P+1}}{2} \frac{\log N_{2P+2}}{N_{2P+2}} \leq \frac{\log 3}{N_{2P+1}}.
\]
(5.21)

By (5.10), (5.11), (5.20), (5.21), and (5.5),
\[
\log \left| \frac{\phi_{jk}(z)}{\phi_{j,2P+1}(z)} \right| \leq \log \frac{c_k}{c_{2P+1}} + N_{2P+1} \log N_k + (N_k - N_{2P+1}) \log R_P
\]
\[
\leq (N_k - N_{2P+1}) \left[\log(\{\psi(N_{2P+1})\}^{1/N_{2P+1}}R_P) + \log 3 \right] = \left(N_k - N_{2P+1} \right) \left(-\frac{\log 3}{N_{2P+1}} \right).
\]
(5.22)

But \((N_k - N_{2P+1})/N_{2P+1} \geq k - 2P - 1\) by (5.4a), (5.8a), and (4.9) (with \(L = 2\), \(N_k\) in place of \(n_k\), and \(m = 2P + 1\)). Thus (5.22) gives
\[
\sum_{k=2P+2}^{\infty} \left| \frac{\phi_{jk}(z)}{\phi_{j,2P+1}(z)} \right| \leq \sum_{k=2P+2}^{\infty} e^{-(\log 3)(k-2P-1)} = \frac{1/3}{1 - 1/3} = 1/2.
\]

References

