Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

An isoperimetric inequality for Artin groups of finite type


Author: Kay Tatsuoka
Journal: Trans. Amer. Math. Soc. 339 (1993), 537-551
MSC: Primary 20F10; Secondary 20F36
DOI: https://doi.org/10.1090/S0002-9947-1993-1137259-2
MathSciNet review: 1137259
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that Artin groups of finite type satisfy a quadratic isoperimetric inequality. Moreover we describe an explicit algorithm to solve the word problem in quadratic time.


References [Enhancements On Off] (What's this?)

  • [Bi] J. Birman, Braids, links, and mapping class groups, Ann. of Math. Stud., no. 82, Princeton Univ. Press, Princeton, N.J., 1974. MR 0375281 (51:11477)
  • [Bri-S] E. Brieskorn and K. Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972). MR 0323910 (48:2263)
  • [Br] K. S. Brown, Buildings, Springer-Verlag, New York, 1989. MR 969123 (90e:20001)
  • [C] J. W. Cannon, The combinatorial structure of cocompact discrete hyperbolic groups, Geom. Dedicata 16 (1983), 123-148. MR 758901 (86j:20032)
  • [Ch] R. Charney, (to appear).
  • [CEHPT] J. W. Cannon, D. B. A. Epstein, D. F. Holt, M. S. Paterson, and W. P. Thurston, Word processing and group theory.
  • [Da] M. W. Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. (2) 117 (1983). MR 690848 (86d:57025)
  • [D] P. Deligne, Les immeubles des groupes de tresses généralisés, Invent. Math. 17 (1972), 273-302. MR 0422673 (54:10659)
  • [G] F. A. Garside, The braid groups and other groups, Quart. J. Math. Oxford Ser. (2) 20 (1969), 235-254. MR 0248801 (40:2051)
  • [Ge-S] S. Gersten and H. Short, Small cancellation theory and automatic groups, Invent. Math. 102 (1990), 305-334. MR 1074477 (92c:20058)
  • [Gr] M. Gromov (S. Gersten, ed.), Essays in group theory, MSRI publication, Springer-Verlag, 1987. MR 919826 (88e:20004)
  • [Sq] C. Squier, The homological algebra of Artin groups, preprint. MR 1308935 (95k:20059)
  • [T] K. Tatsuoka, A finite $ K(\pi ,1)$ for Artin groups of finite type, preprint.
  • [Th] W. Thurston, Finite state algorithms for the braid groups, preprint.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20F10, 20F36

Retrieve articles in all journals with MSC: 20F10, 20F36


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1137259-2
Keywords: Artin group, braid group, isoperimetric inequality, word problem
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society