Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups


Authors: Akira Kono and Nobuaki Yagita
Journal: Trans. Amer. Math. Soc. 339 (1993), 781-798
MSC: Primary 55N20; Secondary 55N22
DOI: https://doi.org/10.1090/S0002-9947-1993-1139493-4
MathSciNet review: 1139493
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Steenrod algebra structures of $ {H^\ast}(BG;Z/p)$ for compact Lie groups are studied. Using these, Brown-Peterson cohomology and Morava $ K$-theory are computed for many concrete cases. All these cases have properties similar as torsion free Lie groups or finite groups, e.g., $ B{P^{odd}}(BG) = 0$.


References [Enhancements On Off] (What's this?)

  • [B-N] M. Bakuradze and R. Nadiradze, Cohomological realizations of two-valued formal groups and their applications, Bull. Acad. Sci. Georgian SSR 128 (1987), 21-24. MR 944670 (89e:55013)
  • [B] A. Borel, Sur l'homologie et la cohomologie die groupes de Lie compacts connexes, Amer. J. Math. 76 (1954), 273-342. MR 0064056 (16:219b)
  • [H-K-R] M. Hopkins, N. Kuhn, and D. Revenel, Generalized group characters and complex oriented cohomology theories, preprint.
  • [H] J. Hunton, The Morava $ K$-theories of wreath products, Math. Proc. Cambridge Philos. Soc. 107 (1990), 309-318. MR 1027783 (91a:55004)
  • [I] K. Inoue, The Brown-Peterson cohomology of $ BSO(6)$, J. Kyoto Univ. 32 (1992), 655-666. MR 1194107 (93k:55018)
  • [J-W] D. Johnson and W. S. Wilson, $ BP$-operations and Morava's extraordinary $ K$-theories, Math. Z. 144 (1975), 55-75. MR 0377856 (51:14025)
  • [K-M1] A. Kono and M. Mimura, On the cohomology of the classifying space of $ PSU(4n + 2)$ and $ PO(4n + 2)$, Publ. Res. Inst. Math. Sci. Kyoto Univ. 10 (1975), 691-720. MR 0372899 (51:9103)
  • [K-M2] -, Cohomology $ \bmod 2$ of the classifying space of compact connected Lie group of type $ {E_6}$, J. Pure Appl. Algebra 6 (1975), 61-81. MR 0368002 (51:4244)
  • [K-M-S] A. Kono, M. Mimura, and N. Shimada, Cohomology of classifying space of certain associative $ H$-space, J. Math. Kyoto Univ. 15 (1975), 607-617. MR 0388426 (52:9262)
  • [K] A. Kono, On cohomology $ \bmod 2$ of classifying spaces of non-simply connected classical Lie groups, J. Math. Soc. Japan 27 (1975), 281-288. MR 0418098 (54:6142)
  • [L1] P. Landweber, Coherence, flatness and cobordism of classifying spaces, Proc. Aarhus Summer Inst. on Algebraic Topology, 1970, pp. 256-269. MR 0271964 (42:6845)
  • [L2] -, Homological properties of comodules over $ M{U_\ast}(MU)$ and $ B{P_\ast}(BP)$, Amer. J. Math. 98 (1976), 591-610. MR 0423332 (54:11311)
  • [L3] -, Elements of infinite filtration in complex cobordism, Math. Scand. 30 (1972), 223-226. MR 0326762 (48:5105)
  • [Q1] D. Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. (2) 94 (1971), 549-572, 573-602. MR 0298694 (45:7743)
  • [Q2] -, The $ \bmod 2$ cohomology rings of extra-special $ 2$-groups and spinor groups, Math. Ann. 194 (1971), 197-212. MR 0290401 (44:7582)
  • [T-Y] M. Tezuka and N. Yagita, Cohomology of finite groups and the Brown-Peterson cohomology. I, II, Lecture Notes in Math., vols. 1370, 1418, Springer-Verlag, Berlin and New York, 1989, 1990, pp. 396-408, 57-69. MR 1000392 (90i:55011)
  • [T1] H. Toda, Cohomology $ \bmod 3$ of the classifying space $ B{F_4}$ of the exceptional group $ {F_4}$, J. Math. Kyoto Univ. 13 (1973), 97-115. MR 0321086 (47:9619)
  • [T2] -, Cohomology of classifying spaces, Homotopy Theory and Related Topics, Adv. Stud. Pure Math., vol. 9, Academic Press, Boston, Mass., 1986, pp. 75-108. MR 896946 (88k:55014)
  • [W] W. S. Wilson, The complex cobordism of $ B{O_n}$, J. London Math. Soc. 29 (1984), 352-366. MR 744106 (85k:55014)
  • [Y1] N. Yagita, On relations between Brown-Peterson cohomology and the ordinary $ \bmod p$ cohomology theory, Kodai Math. J. 7 (1984), 273-285. MR 744140 (85g:55007)
  • [Y2] -, Equivariant $ BP$-cohomology for finite groups, Trans. Amer. Math. Soc. 317 (1990), 485-499. MR 1002925 (91a:55008)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55N20, 55N22

Retrieve articles in all journals with MSC: 55N20, 55N22


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1139493-4
Keywords: Classifying space $ BG$, compact Lie groups, $ BP$-theory, cohomology operations
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society