Finitely decidable congruence modular varieties

Author:
Joohee Jeong

Journal:
Trans. Amer. Math. Soc. **339** (1993), 623-642

MSC:
Primary 08B10; Secondary 03B25

MathSciNet review:
1150016

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A class of algebras of the same type is said to be *finitely decidable* iff the first order theory of the class of finite members of is decidable. Let be a congruence modular variety. In this paper we prove that if is finitely decidable, then the following hold. (1) Each finitely generated subvariety of has a finite bound on the cardinality of its subdirectly irreducible members. (2) Solvable congruences in any locally finite member of are abelian. In addition we obtain various necessary conditions on the congruence lattices of finite subdirectly irreducible algebras in .

**[1]**M. H. Albert,*A sufficient condition for finite decidability*, Algebra Universalis**36**(1996), no. 4, 467–482. MR**1419361**, 10.1007/BF01233917**[2]**Stanley Burris and Ralph McKenzie,*Decidability and Boolean representations*, Mem. Amer. Math. Soc.**32**(1981), no. 246, viii+106. MR**617896**, 10.1090/memo/0246**[3]**Stanley Burris, Ralph McKenzie, and Matthew Valeriote,*Decidable discriminator varieties from unary varieties*, J. Symbolic Logic**56**(1991), no. 4, 1355–1368. MR**1136462**, 10.2307/2275480**[4]**Stanley Burris and H. P. Sankappanavar,*A course in universal algebra*, Graduate Texts in Mathematics, vol. 78, Springer-Verlag, New York-Berlin, 1981. MR**648287****[5]**J. Ershov, I. Lavrov, A. Tatmanov, and M. Taitslin,*Elementary theories*, Russian Math. Surveys**20**(1965), 35-105.**[6]**Ralph Freese and Ralph McKenzie,*Commutator theory for congruence modular varieties*, London Mathematical Society Lecture Note Series, vol. 125, Cambridge University Press, Cambridge, 1987. MR**909290****[7]**David Hobby and Ralph McKenzie,*The structure of finite algebras*, Contemporary Mathematics, vol. 76, American Mathematical Society, Providence, RI, 1988. MR**958685****[8]**Paweł M. Idziak,*Reduced subpowers and the decision problem for finite algebras in arithmetical varieties*, Algebra Universalis**25**(1988), no. 3, 365–383. MR**969157**, 10.1007/BF01229982**[9]**Paweł M. Idziak,*Varieties with decidable finite algebras. I. Linearity*, Algebra Universalis**26**(1989), no. 2, 234–246. MR**999233**, 10.1007/BF01236870**[10]**Paweł M. Idziak,*Varieties with decidable finite algebras. II. Permutability*, Algebra Universalis**26**(1989), no. 2, 247–256. MR**999234**, 10.1007/BF01236871**[11]**-,*Characterization of finitely decidable congruence modular varieties*, preprint, 1992.**[12]**Paweł M. Idziak and Matthew Valeriote,*A property of the solvable radical in finitely decidable varieties*, Fund. Math.**170**(2001), no. 1-2, 69–86. Dedicated to the memory of Jerzy Łoś. MR**1881369**, 10.4064/fm170-1-4**[13]**Joohee Jeong,*Finitary decidability implies congruence permutability for congruence modular varieties*, Algebra Universalis**29**(1992), no. 3, 441–448. MR**1170199**, 10.1007/BF01212443**[14]**-,*On finitely decidable varieties*, Ph. D. thesis, Univ. of California, Berkeley, 1991.**[15]**Ralph McKenzie,*Narrowness implies uniformity*, Algebra Universalis**15**(1982), no. 1, 67–85. MR**663953**, 10.1007/BF02483709**[16]**R. McKenzie, G. McNulty, and W. Taylor,*Algebras, lattices, varieties*, vol. 1, Wadsworth & Brooks/Cole, Monterey, Calif., 1987.**[17]**Ralph McKenzie and Matthew Valeriote,*The structure of decidable locally finite varieties*, Progress in Mathematics, vol. 79, Birkhäuser Boston, Inc., Boston, MA, 1989. MR**1033992****[18]**Michael O. Rabin,*A simple method for undecidability proofs and some applications*, Logic, Methodology and Philos. Sci. (Proc. 1964 Internat. Congr.), North-Holland, Amsterdam, 1965, pp. 58–68. MR**0221924****[19]**Matthew A. Valeriote,*Decidable unary varieties*, Algebra Universalis**24**(1987), no. 1-2, 1–20. MR**921525**, 10.1007/BF01188378**[20]**Matthew A. Valeriote and Ross Willard,*Some properties of finitely decidable varieties*, Internat. J. Algebra Comput.**2**(1992), no. 1, 89–101. MR**1167529**, 10.1142/S0218196792000074**[21]**R. Willard, Manuscript, 1990.**[22]**A. Zamyatin,*A prevariety of semigroups whose elementary theory is solvable*, Algebra and Logic**12**(1973), 233-241.**[23]**-,*Varieties of associative rings whose elementary theory is decidable*, Soviet Math. Dokl.**17**(1976), 996-999.**[24]**-,*A non-abelian variety of groups has an undecidable elementary theory*, Algebra and Logic**17**(1978), 13-17.**[25]**A. P. Zamjatin,*Prevarieties of associative rings whose elementary theory is decidable*, Sibirsk. Mat. Zh.**19**(1978), no. 6, 1266–1282, 1437 (Russian). MR**515180**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
08B10,
03B25

Retrieve articles in all journals with MSC: 08B10, 03B25

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9947-1993-1150016-6

Article copyright:
© Copyright 1993
American Mathematical Society