Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On property I for knots in $ S\sp 3$


Author: Xingru Zhang
Journal: Trans. Amer. Math. Soc. 339 (1993), 643-657
MSC: Primary 57M25; Secondary 57N10
DOI: https://doi.org/10.1090/S0002-9947-1993-1154545-0
MathSciNet review: 1154545
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper deals with the question of which knot surgeries on $ {S^3}$ can yield $ 3$-manifolds homeomorphic to, or with the same fundamental group as, the Poincaré homology $ 3$-sphere.


References [Enhancements On Off] (What's this?)

  • [1] S. Akbulut and J. McCarthy, Casson's invariant for homology $ 3$-sphere--an exposition, Math. Notes, vol. 36, Princeton Univ. Press, Princeton, N. J., 1990 MR 1030042 (90k:57017)
  • [2] H. Bass and J. Morgan, The Smith conjecture, Academic Press, New York, 1984. MR 758459 (86i:57002)
  • [3] S. Bleiler, Prime tangles and composite knots, Lecture Notes in Math., vol. 1144, Springer-Verlag, Berlin and New York, pp. 1-13. MR 823278 (87e:57006)
  • [4] S. Bleiler and C. Hodgson, Spherical space forms and Dehn surgery, preprint. MR 1177439 (93k:57008)
  • [5] S. Bleiler and M. Scharlemann, A projective plane in $ {R^4}$ with three critical points is standard. Strongly invertible knots have property $ P$, Topology 27 (1988), 519-540. MR 976593 (90e:57006)
  • [6] G. Bredon, Introduction to compact transformation groups, Academic Press, New York, 1972. MR 0413144 (54:1265)
  • [7] J. Conway, An enumeration of knots and links and some of their algebraic properties, Computational Problems in Abstract Algebra, Pergamon Press, New York, 1970, pp. 329-358. MR 0258014 (41:2661)
  • [8] D. Gabai, Surgery on knots in solid tori, Topology 28 (1989), 1-6. MR 991095 (90h:57005)
  • [9] -, $ 1$-bridge braids in solid tori, Topology Appl. 37 (1991), 221-235. MR 1082933 (92b:57011)
  • [10] F. González-Acuña, Dehn's construction on knots, Bol. Soc. Mat. Mexicana 15 (1970), 58-79.
  • [11] C. Gordon, Dehn surgery and satellite knots, Trans. Amer. Math. Soc. 275 (1983), 687-708. MR 682725 (84d:57003)
  • [12] C. Gordon and J. Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989), 371-415. MR 965210 (90a:57006a)
  • [13] R. Hartley, Identifying non-invertible knots, Topology 22 (1983), 137-145. MR 683753 (85c:57003)
  • [14] J. Hempel, A simply connected $ 3$-manifold is $ {S^3}$ if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc. 15 (1964), 154-158. MR 0157365 (28:599)
  • [15] -, $ 3$-manifolds, Ann. of Math. Stud., no. 86, Princeton Univ. Press, Princeton, N. J., 1976.
  • [16] L. Kauffman, The Arf invariant of classical knots, Contemp. Math. 44 (1985), 103-116. MR 813106 (87a:57011)
  • [17] -, State models and the Jones polynomial, Topology 26 (1987), 395-407. MR 899057 (88f:57006)
  • [18] M. Kervaire, Smooth homology spheres and their fundamental groups, Trans. Amer. Math. Soc. 144 (1969), 67-72. MR 0253347 (40:6562)
  • [19] R. Kirby, Problems in low dimensional manifold theory, Algebraic and Geometric Topology, Proc. Sympos. Pure Math., vol. 32, Amer. Math. Soc., Providence, R. I., 1978. MR 520548 (80g:57002)
  • [20] R. Kirby and M. Scharlemann, Eight faces of the Poincaré homology $ 3$-sphere, Geometric Topology (J. C. Cantrell, ed.), Academic Press, New York, 1979, pp. 113-146. MR 537730 (80k:57042)
  • [21] W. Menasco, Closed incompressible surfaces in alternating knot and link complement, Topology 23 (1984), 37-44. MR 721450 (86b:57004)
  • [22] J. Montesinos, Surgery on links and double branched coverings of $ {S^3}$, Ann. of Math. Stud., no. 84, Princeton Univ. Press, Princeton, N. J., 1977, pp. 227-259. MR 0380802 (52:1699)
  • [23] L. Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971), 737-745. MR 0383406 (52:4287)
  • [24] U. Oertel, Closed incompressible surfaces in complements of star links, Pacific J. Math. 38 (1981), 737-745. MR 732067 (85j:57008)
  • [25] W. Ortmeyer, Surgery on pretzel knots, Pacific J. Math. 127 (1987), 155-171. MR 876023 (88a:57017)
  • [26] R. Robertello, An invariant of knot cobordism, Comm. Pure. Appl. Math. 18 (1965) 543-555. MR 0182965 (32:447)
  • [27] D. Rolfsen, Knots and links, Publish or Perish, Berkeley, Calif., 1976. MR 0515288 (58:24236)
  • [28] G. Scott, The geometry of $ 3$-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.
  • [29] J. Simon, Some classes of knots with property $ P$, Topology of Manifolds, Markham, Chicago, Ill., 1970. MR 0278288 (43:4018b)
  • [30] M. Takahashi, Two bridge knots have property $ P$, Mem. Amer. Math. Soc. 29 (1981).
  • [31] A. Thompson, Property $ P$ for the band-connect sum of two knots, Topology 26 (1987), 205-207. MR 895572 (88i:57004)
  • [32] X. Zhang, Topics on Dehn surgery, Ph.D. thesis, Univ. of British Columbia, 1991.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M25, 57N10

Retrieve articles in all journals with MSC: 57M25, 57N10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1154545-0
Keywords: Knots, Dehn surgery, property I
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society