Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Uniqueness of positive radial solutions of $ \Delta u+f(u)=0$ in $ {\bf R}\sp n$. II


Author: Kevin McLeod
Journal: Trans. Amer. Math. Soc. 339 (1993), 495-505
MSC: Primary 35J60; Secondary 34B15, 35B05
DOI: https://doi.org/10.1090/S0002-9947-1993-1201323-X
MathSciNet review: 1201323
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a uniqueness result for the positive solution of $ \Delta u + f(u) = 0$ in $ {\mathbb{R}^n}$ which goes to 0 at $ \infty $. The result applies to a wide class of nonlinear functions $ f$, including the important model case $ f(u) = - u + {u^p}$ , $ 1 < p < (n + 2)/(n - 2)$. The result is proved by reducing to an initial-boundary problem for the $ {\text{ODE}}\;u'' + (n - 1)/r + f(u) = 0$ and using a shooting method.


References [Enhancements On Off] (What's this?)

  • [1] H. Berestycki and P.-L. Lions, Non-linear scalar field equations. I, Existence of a ground state; II, Existence of finitely many solutions, Arch. Rational Mech. Anal. 82 (1983), 313-375. MR 695535 (84h:35054a)
  • [2] H. Berestycki, P.-L. Lions, and L. A. Peletier, An $ ODE$ approach to the existence of positive solutions for semilinear problems in $ {\mathbb{R}^n}$, Indiana Univ. Math. J. 30 (1981), 141-167. MR 600039 (83e:35009)
  • [3] C. V. Coffman, Uniqueness of the ground state for $ \Delta u - u + {u^3} = 0$ and a variational characterization of other solutions, Arch. Rational Mech. Anal. 46 (1972), 12-95. MR 0333489 (48:11814)
  • [4] X. Garaizar, Existence of positive radial solutions for semilinear elliptic equations in the annulus, J. Differential Equations 70 (1987), 69-92. MR 904816 (89f:35019)
  • [5] M. K. Kwong, Uniqueness of positive radial solutions of $ \Delta u - u + {u^p} = 0$ in $ {\mathbb{R}^n}$, Arch. Rational Mech. Anal. 105 (1989), 243-266. MR 969899 (90d:35015)
  • [6] -, Personal communication.
  • [7] K. McLeod and J. Serrin, Uniqueness of positive radial solutions of $ \Delta u + f(u) = 0$ in $ {\mathbb{R}^n}$, Arch. Rational Mech. Anal. 99 (1987), 115-145. MR 886933 (88c:35057)
  • [8] K. McLeod, W. C. Troy, and F. B. Weissler, Radial solutions of $ \Delta u + f(u) = 0$ with prescribed numbers of zeroes, J. Differential Equations 83 (1990), 368-378. MR 1033193 (90m:35021)
  • [9] L. A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in $ {\mathbb{R}^n}$, Arch. Rational Mech. Anal. 81 (1983), 181-197. MR 682268 (84b:35046)
  • [10] S. I. Pohozaev, Eigenfunctions of the equation $ \Delta u + \lambda f(u) = 0$, Soviet Math. 5 (1965), 1408-1411.
  • [11] L. Zhang, Uniqueness of positive solutions of $ \Delta u + f(u) = 0$ in $ {\mathbb{R}^n}$, preprint. MR 1129746 (92j:35055)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J60, 34B15, 35B05

Retrieve articles in all journals with MSC: 35J60, 34B15, 35B05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1201323-X
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society