THE GORENSTEINNESS OF THE SYMBOLIC BLOW-UPS FOR CERTAIN SPACE MONOMIAL CURVES

SHIRO GOTO, KOJI NISHIDA, AND YASUHIRO SHIMODA

Abstract. Let \(p = p(n_1, n_2, n_3) \) denote the prime ideal in the formal power series ring \(A = k[[X, Y, Z]] \) over a field \(k \) defining the space monomial curve \(X = T^{n_1}, Y = T^{n_2}, \) and \(Z = T^{n_3} \) with \(\gcd(n_1, n_2, n_3) = 1. \) Then the symbolic Rees algebras \(R_s(p) = \bigoplus_{n \geq 0} p^n \) are Gorenstein rings for the prime ideals \(p = p(n_1, n_2, n_3) \) with \(\min\{n_1, n_2, n_3\} = 4 \) and \(p = p(m, m + 1, m + 4) \) with \(m \neq 9, 13. \) The rings \(R_s(p) \) for \(p = p(9, 10, 13) \) and \(p = p(13, 14, 17) \) are Noetherian but non-Cohen-Macaulay, if \(\text{ch} k = 3. \)

1. Introduction

Let \(k \) be a field and let \(A = k[[X, Y, Z]] \) and \(S = k[[T]] \) be formal power series rings over \(k. \) Let \(p = p(n_1, n_2, n_3) \) denote, for positive integers \(n_1, n_2 \) and \(n_3 \) with \(\gcd(n_1, n_2, n_3) = 1, \) the kernel of the homomorphism \(f: A \to S \) of \(k \)-algebras defined by \(f(X) = T^{n_1}, f(Y) = T^{n_2}, \) and \(f(Z) = T^{n_3}. \) We put \(R_s(p) = \sum_{n \geq 0} p^n t^n \) (here \(t \) denotes an indeterminate over \(A \)) and call it the symbolic Rees algebra of \(p. \)

In the previous paper \([1]\) the authors studied the problem when \(R_s(p) \) is a Gorenstein ring and gave a criterion for the case in terms of the elements \(f \) and \(g \) of \(p \) in Huneke's condition \([6]\) for \(R_s(p) \) to be Noetherian. With the criterion the authors proved that \(R_s(p) \) are always Gorenstein for the prime ideals \(p = p(m, m + 1, m + 3) \) with \(m \geq 1 \) and \(p = p(n_1, n_2, n_3) \) with \(\min\{n_1, n_2, n_3\} = 3. \)

To be the next targets we would like to choose the prime ideals \(p = p(m, m + 1, m + 4) \) with \(m \geq 1 \) and \(p = p(n_1, n_2, n_3) \) with \(\min\{n_1, n_2, n_3\} = 4, \) and our conclusion for these ideals can be summarized into the following two theorems.

Theorem (1.1). \(R_s(p) \) is a Gorenstein ring for \(p = p(m, m + 1, m + 4), \) if \(m \neq 9, 13. \)

Theorem (1.2). \(R_s(p) \) is a Gorenstein ring for \(p = p(n_1, n_2, n_3), \) if \(\min\{n_1, n_2, n_3\} = 4. \)

In Theorem (1.2) the fact that \(R_s(p) \) is Noetherian is due to \([6].\) Our contribution is its Gorensteinness. For \(m = 9, 13 \) in Theorem (1.1) the rings \(R_s(p) \) are Noetherian but not Cohen-Macaulay, if \(\text{ch} k = 3 \) (cf. \([7]\) and \((3.4).)\)

Received by the editors August 15, 1990 and, in revised form, September 10, 1991.

1991 Mathematics Subject Classification. Primary 13H10, 13H15; Secondary 13E05.

The authors are partially supported by Grant-in-Aid for Cooperative Research.
Theorem (1.1) (resp. Theorem (1.2)) shall be proved in §3 (resp. §4). Section 2 is devoted to some preliminary steps. In his remarkable paper [6] Huneke gave a criterion for $R_s(p)$ to be Noetherian, by which he guaranteed the Noetherian property of $R_s(p)$ for $p = p(n_1, n_2, n_3)$ with $\min\{n_1, n_2, n_3\} = 4$. To prove Theorem (1.2) we need his arguments as well as his results (that we will briefly summarize in §4). However the key is the criterion given by the authors [1] for $R_s(p)$ to be a Gorenstein ring, which we will recall in §2 for the sake of completeness.

Throughout this paper let (A, m) be a regular local ring of $\dim A = 3$ and p a prime ideal in A with $\dim A/p = 1$. For each finitely generated A-module M let $l_A(M)$ and $\mu_A(M)$ respectively denote the length of M and the number of elements in a minimal system of generators for M.

2. Preliminaries

First of all let us recall Huneke’s criterion.

Proposition (2.1) [6]. If there exist $f \in p^{(k)}$ and $g \in p^{(l)}$ with positive integers k, l such that $l_A(A/(f, g, x)A) = kl \cdot l_A(A/p + xA)$ for some $x \in m \setminus p$, then $R_s(p)$ is Noetherian. When the field A/m is infinite, the converse is also true.

The criterion given by the authors for $R_s(p)$ to be a Gorenstein ring is based on (2.1) and is stated as follows.

Theorem (2.2) [1]. Let f and g be as in (2.1). Then the following two conditions are equivalent.

1. $R_s(p)$ is a Gorenstein ring.
2. $A/(f, g) + p(n)$ is a Cohen-Macaulay ring for any $1 \leq n \leq k + l - 2$.

When this is the case, the A-algebra $R_s(p)$ is generated by $\{p^{(n)}t^n\}_{1 \leq n \leq k + l - 2}$, ft^k and gt^l, and the rings $A/(f) + p(n)$, $A/(g) + p(n)$ and $A/(f, g) + p(n)$ are Cohen-Macaulay for all $n \geq 1$.

Here let us note the following lemma that we will use to calculate the length of certain modules.

Lemma (2.3) [1]. Let R be a two-dimensional Cohen-Macaulay local ring and let x, y be a system of parameters of R. For given sequences $p_0 = 0 < p_1 \leq p_2 \leq \cdots \leq p_n$ and $q_0 \geq q_1 \geq \cdots \geq q_{n-1} > q_n = 0$ of integers, let

$$I = (x^{p_i}, y^{q_i})|0 \leq i \leq n)R.$$

Then

$$l_R(R/I) = l_R(R/(x, y)) \cdot \sum_{i=1}^{n} q_{i-1} (p_i - p_{i-1}).$$

Proof. We may assume that $n \geq 2$ and that our assertion is true for $n - 1$. Then considering the sequences $p_i' = p_i$ $(0 \leq i \leq n - 1)$, $q_i' = q_i$ $(0 \leq i \leq n - 2)$ and $q_{n-1}' = 0$, we get by the hypothesis on n that

$$l_R(R/I') = l_R(R/(x, y)) \cdot \sum_{i=1}^{n-1} q_{i-1} (p_i - p_{i-1}),$$

The formulation of this lemma is due to the referee. The authors are grateful to the referee for his suggestion.
where \(I' = (x^{p_i}y^{q_i}) | 0 \leq i \leq n-1) R \). Since \(I' = I + (x^{p_n-1}) \) and \(I: x^{p_n-1} = (x^{p_n-p_{n+1}}, y^{q_n-1}) \), we have

\[
l_R(R/I) = l_R(R/I') + l_R(I + (x^{p_n-1})/I) = l_R(R/(x, y)) \cdot \sum_{i=1}^{n-1} q_{i-1}(p_i - p_{i-1}) + l_R(R/(x^{p_n-p_{n+1}}, y^{q_n-1})) = l_R(R/(x, y)) \cdot \sum_{i=1}^{n} q_{i-1}(p_i - p_{i-1})
\]
as required.

Now let us assume that our ideal \(p \) is generated by the maximal minors of the matrix

\[
M = \begin{bmatrix}
X^\alpha & Y^\beta & Z^\gamma \\
Y^\beta & Z^\gamma & X^\alpha
\end{bmatrix},
\]

where \(X, Y, Z \) is a regular system of parameters for \(A \) and \(\alpha, \beta, \gamma, \alpha', \beta', \gamma' \) are positive integers. Then after suitable permutations of the rows and columns of \(M \), we may assume that the matrix \(M \) is one of the following type.

(I) \(\alpha \leq \alpha', \beta \leq \beta' \) and \(\gamma \leq \gamma' \),

(II) \(\alpha' < \alpha, \beta < \beta' \) and \(\gamma < \gamma' \).

As was proved by Herzog and Ulrich [3], \(p \) is self-linked (resp. not self-linked) if and only if \(M \) has type (I) (resp. type (II)). And in any case it is already known that \(\mu_A(p^{(2)}/p^2) = 1 \) and \(p^{(n)} \neq p^n \) for all \(n \geq 2 \) (cf. [5]). However, later we will need so frequently the assertions for the prime ideals \(p \) whose matrices \(M \) have type (I) that we would like to give a brief proof for the case. (See [7] for the case of type (II).)

So assume that \(\alpha \leq \alpha', \beta \leq \beta' \) and \(\gamma \leq \gamma' \). Let \(a = Z^{\gamma+\gamma'} - X^\alpha Y^\beta, \ b = X^{\alpha+\alpha'} - Y^\beta Z^{\gamma'}, \ c = Y^\beta + Z^\gamma - X^\alpha \). Hence \(p = (a, b, c) \) and any pair of \(a, b \) and \(c \) forms a regular system of parameters for \(A_p \). We begin with the following

Lemma (2.4). \(\alpha < \alpha', \beta < \beta' \) or \(\gamma < \gamma' \).

Proof. Suppose that \(\alpha = \alpha', \beta = \beta' \) and \(\gamma = \gamma' \). Then since \(a - b = (X^\alpha + Y^\beta + Z^\gamma)(Z^\gamma - X^\alpha) \), we have \(X^\alpha + Y^\beta + Z^\gamma \in p \) or \(Z^\gamma - X^\alpha \in p \), while \(p \subseteq (X^\alpha, Y^\beta, Z^\gamma)^2 \). Hence \(Z^\gamma \in (X^\alpha, Y^\beta, Z^\gamma)^2 \), which is absurd.

Proposition (2.5). There exists \(d_2 \in p^{(2)} \) such that

\[
X^\alpha d_2 = acZ^{\gamma-\gamma} - b^2 Y^{\beta-\beta},
Y^\beta d_2 = ab - c^2 X^{\alpha-\alpha} Z^{\gamma-\gamma} \quad \text{and} \quad Z^\gamma d_2 = -a^2 + bcX^{\alpha-\alpha} Y^{\beta-\beta}.
\]

If \(\alpha < \alpha' \), then \(d_2 \equiv -Z^{\gamma+2\gamma} \mod(X) \).

Proof. Because \(X^\alpha a + Y^\beta b + Z^{\gamma} c = Y^\beta a + Z^{\gamma} b + X^{\alpha} c = 0 \), we see

\[
(X^\alpha a + Y^\beta b) \cdot b = -Z^\gamma bc = (Y^\beta a + X^\alpha c) \cdot cZ^{\gamma-\gamma}
\]

so that \(X^\alpha(ab - c^2 X^{\alpha-\alpha} Z^{\gamma-\gamma}) = Y^\beta(acZ^{\gamma-\gamma} - b^2 Y^{\beta-\beta}) \), whence \(X^\alpha d_2 = acZ^{\gamma-\gamma} - b^2 Y^{\beta-\beta} \) and \(Y^\beta d_2 = ab - c^2 X^{\alpha-\alpha} Z^{\gamma-\gamma} \) for some \(d_2 \in p^{(2)} \). Notice
that
\[(Z \gamma \ d_2) b = (Z \gamma b) d_2 = (-Y^\beta a - X^{a'} c) d_2
\]
\[= (Y^\beta d_2)(-a) + (X^{a'} d_2)(-cX^{a'-a})
\]
\[= -a^2 + bcX^{a'-a}Y^{\beta'-\beta} b\]
and we get \(Z \gamma \ d_2 = -a^2 + bcX^{a'-a}Y^{\beta'-\beta}\), too. If \(a < a'\), we have \(Y^\beta d_2 \equiv ab \equiv -Y^\beta Z^{\gamma+2\gamma'} \mod(X)\) so that \(d_2 \equiv -Z^{\gamma+2\gamma'} \mod(X)\).

Corollary (2.6) [5].

1. \(p^{(2)} = (d_2) + p^2\).
2. \(\mu_A(p^{(2)}) \leq 5\).
3. \(p^{(n)} \neq p^n\) if \(n \geq 2\).

Proof. By (2.4) we may assume that \(a < a'\). Then as \(d_2 \equiv -Z^{\gamma+2\gamma'} \mod(X)\) by (2.5) and as \((X) + p = (X) + (Z^{\gamma+\gamma'}, Y^\beta Z^{\gamma'}, Y^{\beta'+\beta'})\), we have

\[(*) \ (X, d_2) + p^2 = (X) + (Z^{\gamma+2\gamma'}, Y^{\beta+\beta'} Z^{\gamma'+\gamma'}, Y^{\beta'+\beta'} Z^{\gamma'}, Y^{2(\beta'+\beta')})\]
whence \(l_A(A/(X, d_2) + p^2) = 3(\beta' \gamma + \beta' \gamma' + \beta' \gamma')\) by (2.3). Let \(e_{XA}(A/p^{(2)})\) denote the multiplicity of \(A/p^{(2)}\) relative to the parameter \(X\). Then

\[l_A(A/(X) + p^{(2)}) = e_{XA}(A/p^{(2)})\]

since \(A/p^{(2)}\) is a Cohen-Macaulay ring, while we get by the associative formula [8, p. 126] of multiplicity that
\[e_{XA}(A/p^{(2)}) = l_A(A/p^2 A_p) \cdot e_{XA}(A/p) = 3 \cdot l_A(A/(X) + p)\]
\[= 3 \cdot l_A(A/(X) + (Z^{\gamma+\gamma'}, Y^\beta Z^{\gamma'}, Y^{\beta'+\beta'}))\]
\[= 3(\beta' \gamma + \beta' \gamma' + \beta' \gamma')\]
(cf. (2.3)). Hence \(l_A(A/(X, d_2) + p^2) = l_A(A/(X) + p^{(2)})\), which yields \((X) + p^{(2)} = (X, d_2) + p^2\) so that \(p^{(2)} = (d_2) + p^2 + Xp^{(2)}\). Thus Nakayama's lemma proves the assertion (1). Notice that \(\mu_A(p^{(2)}) = \mu_A((X) + p^{(2)}/(X)) \leq 5\) by the above equality (*) and we have the assertion (2). As \((X) + p^2 \subseteq (X, Y, Z^{2(\gamma+\gamma')})\) and as \(d_2 \equiv -Z^{\gamma+2\gamma'} \mod(X)\), we have \(d_2 \notin (X) + p^2\) so that \(d_2 \notin p^2\); hence \(p^{(2)} \neq p^2\). Let \(n \geq 3\) be an integer and assume that \(p^{(n)} = p^n\). Hence \(d_2^{(n)} \cdot (at)^{n-2} \in p^n t^{n-1}\). We put \(R = \bigoplus_{i \geq 0} p^i t^i\) and \(G = R/pR = \bigoplus_{i \geq 0} p^i /p^{i+1}\). Then because \(at\) is \(G\)-regular (cf., e.g., [4, 2.1]), we have \(d_2 t \in pR\), that is \(d_2 \in p^2\) which cannot happen as we have checked above. Thus \(p^{(n)} \neq p^n\) for all \(n \geq 2\).

3. **Proof of Theorem (1.1)**

We begin with the following

Theorem (3.1). Suppose that \(p\) is generated by the maximal minors of the matrix
\[
\begin{bmatrix}
X & Y^3 & Z^{n+1} \\
Y & Z^3 & X^n
\end{bmatrix},
\]
where \(X, Y, Z\) is a regular system of parameters for \(A\) and \(n\) is a positive integer. Then \(R_s(p)\) is a Gorenstein ring.
Proof. If \(n = 1 \), then after renaming \(X, Y \) and \(Z \), we may assume that \(p \) is generated by the maximal minors of the matrix

\[
M = \begin{bmatrix} X & Y & Z^3 \\ Y & Z^2 & X^3 \end{bmatrix}.
\]

Let us maintain the same notation as in §2. Then the matrix \(M \) is of type (I) and so we have by (2.5) that \(d_2 \equiv -Z^8 \mod(X) \). Hence \((c, d_2, X) = (X, Y^2, Z^8)\) and

\[
l_A(A/(c, d_2, X)) = 16 = 1 \cdot 2 \cdot l_A(A/(X)+p),
\]

because \(l_A(A/(X)+p) = l_A(A/(X)+(Z^5, YZ^3, Y^2)) = 8 \) (cf. (2.3)). Thus \(R_5(p) \) is a Gorenstein ring by (2.2).

Suppose that \(n \geq 2 \) and recall that \(Xd_2 = acZ^{n-2} - b^2Y^2 \) and \(Yd_2 = ab - c^2X^{n-1}Z^{n-2} \) (cf. (2.5)). Then as

\[
(Xd_2 + b^2Y^2)b = Z^{n-2}abc = (Yd_2 + c^2X^{n-1}Z^{n-2})cZ^{n-2},
\]

we have \(X(bd_2 - c^3X^{n-2}Z^{2n-4}) = Y(cd_2Z^{n-2} - b^3Y) \) so that

1. \(Xd_3 = cd_2Z^{n-2} - b^3Y \) and
2. \(Yd_3 = bd_2 - c^3X^{n-2}Z^{2n-4} \),

for some \(d_3 \in p(3) \). When \(n = 2 \), we have \(d_2 \equiv -Z^9 \mod(X) \) (cf. (2.5)). Hence as \(Yd_3 \equiv (Z^{12} - Y^{11})Y \mod(X) \) by the equation (2), we get \(d_3 \equiv Z^{12} - Y^{11} \mod(X) \). Therefore \((b, d_3, X) = (X, YZ^3, Z^{12} - Y^{11})\) so that

\[
l_A(A/(b, d_3, X)) = l_A(A/(X, Y, Z^{12} - Y^{11})) + l_A(A/(X, Z^3, Z^{12} - Y^{11}))
\]

\[
= 45 = 1 \cdot 3 \cdot l_A(A/(X)+p),
\]

since \(l_A(A/(X)+p) = l_A(A/(X)+(Z^6, YZ^3, Y^4)) = 15 \). Thus \(R_5(p) \) is Noetherian by (2.1). Because \(p(2) = (d_2) + p^2 \) (cf. (2.6)(1)), we have \((X, b) + p(2) = (X, YZ^3, Y^8)\) whence

\[
l_A(A/(X, b) + p(2)) = 30 = e_X(A/(b) + p(2)),
\]

that is \(A/(b) + p(2) \) is Cohen-Macaulay and so \(R_5(p) \) is a Gorenstein ring by (2.2).

Now assume that \(n \geq 3 \). Then since

\[
(Xd_3 + b^3Y)\equiv bcd_2Z^{n-2} = (Yd_3 + c^3X^{n-2}Z^{2n-4})cZ^{n-2}
\]

by the equations (1) and (2), we have \(X(bd_3 - c^4X^{n-3}Z^{3n-6}) = Y(cd_3Z^{n-2} - b^4) \) so that

3. \(Yd_4 = bd_3 - c^4X^{n-3}Z^{3n-6} \)

for some \(d_4 \in p(4) \). Notice that \(d_3 \equiv Z^{3n+6} \mod(X) \) by the equation (2) and we get \(d_4 \equiv -Z^{4n+7} - X^{n-3}Y^{15}Z^{3n-6} \mod(X) \) by the equation (3). Hence \((c, d_4, X) = (X, Y^4, Z^{4n+7})\) so that

\[
l_A(A/(c, d_4, X)) = 4 \cdot (4n + 7) = 1 \cdot 4 \cdot l_A(A/(X)+p).
\]

Thus \(R_6(p) \) is Noetherian by (2.1). To check that \(R_6(p) \) is Gorenstein, it is enough by (2.2) to see that \(A/(c) + p(2) \) and \(A/(c) + p(3) \) are Cohen-Macaulay. As \((X, c) + p(2) = (X) + (Z^{2n+5}, Y^2Z^{2n+2}, Y^4)\) (cf. (2.6)(1)), we have

\[
l_A(A/(X, c) + p(2)) = 2 \cdot (4n + 7) = e_X(A/(c) + p(2))
\]
whence \(A/(c) + p(2) \) is Cohen-Macaulay. Because \(d_3 \equiv Z^{3n+6} \mod(X) \), we have

\[
\begin{align*}
(X, d_3) + pp(2) &= (X) + (Z^{3n+6}, Y^3Z^{3n+3}, Y^4Z^{2n+5}, Y^6Z^{2n+2}, \\
& \quad Y^8Z^{n+4}, Y^9Z^{n+1}, Y^{12})
\end{align*}
\]

by (2.6)(1). Therefore

\[
l_A(A/(X, d_3) + pp(2)) = 6 \cdot (4n + 7) = l_A(A/(X) + p(3))
\]

so that \((X) + p(3) = (X, d_3) + pp(2) \). Hence

\[
(X, c) + p(3) = (X) + (Z^{3n+6}, Y^3Z^{3n+3}, Y^4)
\]

and so we get

\[
l_A(A/(X, c) + p(3)) = 3 \cdot (4n + 7) = e_A(A/(c) + p(3)).
\]

Thus \(A/(c) + p(3) \) is Cohen-Macaulay.

To prove Theorem (1.1) we need one more result.

Proposition (3.2). Suppose that \(p \) is generated by the maximal minors of the matrix

\[
\begin{bmatrix}
X^2 & Y^2 & Z^3 \\
Y & Z^2 & X^2
\end{bmatrix}
\]

where \(X, Y, Z \) is a regular system of parameters for \(A \). Then \(R_3(p) \) is a Gorenstein ring.

Proof. The matrix has type (I) and so by (2.5), \(Yd_2 = ab - c^2Z \) and \(Z^2d_2 = -a^2 + bcY \). Therefore as

\[
(Yd_2 + c^2Z)a = a^2b = (bcY - Z^2d_2)b,
\]

we get \(Y(ad_2 - b^2c) = Z(-ac^2 - bd_2Z) \) so that \(Yd_3 = -ac^2 - bd_2Z \) and \(Zd_3 = ad_2 - b^2c \) for some \(d_3 \in p(3) \). Notice that

\[
d_2 \equiv -Z^8 \mod(Y), \quad d_2 \equiv -X^6Y \mod(Z), \\
d_3 \equiv -Z^{12} + X^{10}Z \mod(Y) \quad \text{and} \quad d_3 \equiv X^2Y^7 \mod(Z).
\]

Then we have \(c^2d_2 + bd_3 \equiv 0 \mod(Z) \), whence \(Zd_4 = c^2d_2 + bd_3 \) for some \(d_4 \in p(4) \). Because \(d_4 \equiv X^{14} - 2X^4Z^{11} \mod(Y) \), we see

\[
l_A(A/(d_2, d_4, Y)) = l_A(A/(X^{14}, Y, Z^8)) = 112 = 2 \cdot 4 \cdot l_A(A/(Y) + p).
\]

Thus \(R_3(p) \) is Noetherian by (2.1). To check that \(R_3(p) \) is Gorenstein, let \(I = (d_2, d_3) + p^3 (\subseteq (d_2) + p(3)) \). Then

\[
(Y) + I = (Y) + (Z^8, X^6Z^6, X^8Z^4, X^{10}Z, X^{12})
\]

so that \(l_A(A/(Y) + I) = 70 \) by (2.3), while

\[
e_{YA}(A/d_2 + p(3)) = l_{A_p}(A_p/d_2A_p + p^3A_p) \cdot e_{YA}(A/p) \\
= 5 \cdot 14 = 70
\]

by the associative formula of multiplicity (cf. [1, (3.1)(3)], too). Hence by the inequalities

\[
l_A(A/(Y) + I) \geq l_A(A/(Y, d_2) + p(3)) \geq e_{YA}(A/(d_2) + p(3)),
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
we get that $A/(d_2) + p^{(3)}$ is Cohen-Macaulay. Let $J = (d_2, d_4) + d_3p + p^4 (\subseteq (d_2) + p^{(4)})$. Then

$$(Y) + J = (Y) + (Z^8, X^{10}Z^6, X^{12}Z^3, X^{14})$$

so that $l_A(A/(Y) + J) = 98 = e_{Y_A}(A/(d_2) + p^{(4)})$, whence by the inequalities

$$l_A(A/(Y) + J) \geq l_A(A/(Y, d_2) + p^{(4)}) \geq e_{Y_A}(A/(d_2) + p^{(4)}),$$

we find that $A/(d_2) + p^{(4)}$ is Cohen-Macaulay. Thus $R_s(p)$ is a Gorenstein ring by (2.2).

Remark (3.3). The prime ideal $p = p(11, 14, 10)$ corresponds to the ideal considered in (3.2).

Proof of Theorem (1.1). We write $m = 4n + r$ with $0 \leq r < 4$. If $r = 0$, then $p = (X^{n+1} - Z^n, Y^4 - X^3Z)$ which is a complete intersection in $A = k[[X, Y, Z]]$. Hence $p^n = p^n$ for any $n \geq 1$ and we have an isomorphism $R_s(p) \cong A[T_1, T_2]/(f)$ of A-algebras, where $A[T_1, T_2]$ is a polynomial ring and $0 \neq f \in A[T_1, T_2]$. Thus $R_s(p)$ is certainly Gorenstein.

(1) $(r = 1)$. If $n = 0$, then $Y - X^2 \in p$ and p is a complete intersection in A. If $n = 1$, then $p = (Y^3 - Z^2, X^3 - YZ)$, which is a complete intersection in A. Thus we may assume $n \geq 2$. Then p is generated by the maximal minors of the matrix

$$\begin{bmatrix} X^3 & Y^3 & Z^n \\ Y & Z^2 & X^{n-1} \end{bmatrix}$$

(cf. [2]), whence the assertion follows from [1, (4.1)] if $n \geq 4$. The cases $n = 2, 3$ are the exceptional ones, that is $m = 9, 13$.

(2) $(r = 2)$. We may assume $n \geq 1$, because $Z - Y^2 \in p$ if $n = 0$. Hence p is generated by the maximal minors of the matrix

$$\begin{bmatrix} X^3 & Y^2 & Z^n \\ Y^2 & Z & X^n \end{bmatrix}$$

so that the assertion follows from [1, (4.1)] if $n \geq 3$. When $n = 1$, notice that p is generated by the maximal minors of the matrix

$$\begin{bmatrix} Y^2 & Z & X^3 \\ Z & X & Y^2 \end{bmatrix}$$

and we have $R_s(p)$ to be a Gorenstein ring again by [1, (4.1)]. If $n = 2$, p is generated by the maximal minors of the matrix

$$\begin{bmatrix} Y^2 & Z^2 & X^3 \\ Z & X^2 & Y^2 \end{bmatrix}$$

so that $R_s(p)$ is Gorenstein by (3.2).

(3) $(r = 3)$. We may assume $n \geq 1$, as $Z - XY \in p$ if $n = 0$. Hence p is generated by the maximal minors of the matrix

$$\begin{bmatrix} Z & Y^3 & X^{n+1} \\ Y & X^3 & Z^n \end{bmatrix}$$

so that the assertion follows from (3.1). This completes the proof of Theorem (1.1).

The symbolic Rees algebras $R_s(p)$ for $p = p(9, 10, 13)$ is Noetherian but not Cohen-Macaulay, if $\text{ch} k = 3$ (cf. [7]). The same is true for $p = p(13, 14, 17)$ too, if $\text{ch} k = 3$. We shall prove it in the following.
Example (3.4). Let $p = p(13, 14, 17)$ and let M denote the unique graded maximal ideal of $R_5(p)$. Then $R_5(p)$ is a Noetherian ring with $\dim R_5(p)_M = 4$ and $\depth R_5(p)_M = 3$, if $\text{ch} k = 3$.

Proof. The ideal p is generated by the maximal minors of the matrix

$$M = \begin{bmatrix} X^3 & Y^3 & Z^3 \\ Y & Z & X^2 \end{bmatrix}$$

of type (II). Let $a = Z^4 - X^2Y^3$, $b = X^5 - YZ^3$ and $c = Y^4 - X^3Z$ (hence $p = (a, b, c)$). Then as $X^3a + Y^3b + Z^3c = Ya + Zb + X^2c = 0$, we have $Y^3a^3 + Z^3b^3 + X^6c^3 = 0$. Therefore because

$$(Z^3b^3 + X^6c^3)b = -Y^3a^3b = (X^3a + Z^3c)a^3$$

we see $X^3(a^4 - bc^3X^3) = Z^3(b^4 - a^3c)$ so that $Z^3d_4 = a^4 - bc^3X^3$ for some $d_4 \in p^{(4)}$. Notice that $c \equiv Y^4$ and $d_1 \equiv Z^{13} \mod(X)$ and we find

$$l_4(A/(c, d_4, X)) = 52 = 1 \cdot 4 \cdot l_4(A/(X + p),$$

whence $R_5(p)$ is Noetherian by (2.1) but non-Cohen-Macaulay by (2.2) and [7, (2.4)]. Because $\depth R_5(p)_M \geq 3$ by [1, (2.1) and (3.7)(3)] and $\dim R_5(p)_M = 4$, we get $\depth R_5(p)_M = 3$ as required.

4. Proof of Theorem (1.2)

Let $p = p(n_1, n_2, n_3)$ with $n_1 = 4$ and assume that p is not a complete intersection in $A = A[[X, Y, Z]]$. Hence by [2] the ideal p is generated by maximal minors of a matrix of the following form

$$\begin{bmatrix} X^\alpha & Y^\beta & Z^\gamma \\ Y^\beta & Z^\gamma & X^\alpha' \end{bmatrix}$$

with positive integers $\alpha, \beta, \gamma, \alpha', \beta'$ and γ'. Then as $(X) + p = (X) + (Z^{\gamma+\gamma'}, Y^\beta Z^{\gamma'}, Y^\beta Z^{\gamma'})$, we have $l_4(A/(X) + p) = \beta \gamma + \beta \gamma' + \beta' \gamma'$ (cf. (2.3)), while $e_{X^\alpha}(A/p) = 4 (= n_1)$. Hence $\beta = \gamma = 1$ and $\gamma + \beta' = 3$, as $\beta \gamma + \beta \gamma' + \beta' \gamma' = 4$. We may assume $\gamma = 1$ and $\beta = 2$ in that solving the equations

$$4(\alpha + \alpha') = n_2 + n_3, \quad 3n_2 = 4\alpha + n_3, \quad 2n_3 = 4\alpha + 2n_2,$$

we get $n_2 = 2\alpha + \alpha'$ and $n_3 = 2\alpha + 3\alpha'$; hence α' is odd, as $\gcd(4, n_2, n_3) = 1$. Thus Theorem (1.2) follows from the next more general

Theorem (4.1). Let p be a prime ideal in a 3-dimensional regular local ring A and assume that p is generated by the maximal minors of a matrix of the form

$$\begin{bmatrix} X^q & Y^2 & Z \\ Y & Z & X^p \end{bmatrix}$$

where X, Y, Z is a regular system of parameters for A and p, q are positive integers with p odd. Then $R_s(p)$ is a Gorenstein ring.

We divide the proof of Theorem (4.1) into a few parts. First we put $a = Z^2 - X^p Y^2$, $b = X^{p+q} - YZ$ and $c = Y^3 - X^q Z$. Hence $p = (a, b, c)$ and any pair of a, b and c forms a regular system of parameters for A_p. Choose $0 \leq k \in Z$ so that $kp < q \leq (k + 1)p$. Then we get by [6, Proof of 3.14] the following
Lemma 4.2. There exist elements $e_n \in p^{(n)}$ (1 ≤ n ≤ $k + 2$) and $f \in p^{(2k+3)}$ such that

\[
e_n \equiv Y^{2n+1} \mod(X) \quad (1 \leq n \leq k+1), \\
e_{k+2} \equiv (-1)^k Z^{2k+3} \mod(X) \quad \text{if } q < (k+1)p, \\
e_{k+2} \equiv Y^{2k+5} + (-1)^k Z^{2k+3} \mod(X) \quad \text{if } q = (k+1)p, \\
f \equiv -Z^{4k+4} \mod(X) \quad \text{if } q - kp < (k+1)p - q, \\
f \equiv Y^{4k+8} \mod(X) \quad \text{if } q - kp > (k+1)p - q > 0.
\]

The Noetherian property of $R_s(p)$ now directly follows from (2.1) and (4.2), because

\[l_A(A/(b, e_{k+2}, X)) = l_A(A/(X, YZ, Y^{2k+5} + (-1)^k Z^{2k+3})) = 1 \cdot (k+2) \cdot 4 \quad \text{if } q = (k+1)p,
\]

\[l_A(A/(e_{k+1}, f, X)) = l_A(A/(X, Y^{2k+3}, Z^{4k+4})) = (k+1) \cdot (2k+3) \cdot 4 \quad \text{if } q - kp < (k+1)p - q
\]

and

\[l_A(A/(e_{k+2}, f, X)) = l_A(A/(X, Y^{4k+8}, Z^{2k+3})) = (k+2) \cdot (2k+3) \cdot 4 \quad \text{if } q - kp > (k+1)p - q > 0
\]

(notice that $q - kp \neq (k+1)p - q$, as p is odd).

To see that $R_s(p)$ is a Gorenstein ring we need further informations about the ideals $p^{(n)}$. We begin with the following

Proposition (4.6). $p^{(n)} = p^n + \sum_{j=1}^n e_j p^{n-j}$ for $1 \leq n \leq k + 1$.

Proof. Let $I = p^n + \sum_{j=1}^n e_j p^{n-j}$ and

\[J = (X) + (Z^{2n}, YZ^{2n-1}, \ldots, Y^{n-1}Z^{n+1}, Y^n Z^n) + (Y^{n+2} Z^{n-1}, Y^{n+3} Z^{n-2}, \ldots, Y^{2n} Z, Y^{2n+1}).
\]

Then $(X) + I \supseteq J$, because

\[a^{n-j} b^j \equiv Y^j Z^{2n-j} \mod(X) \quad \text{for } 0 \leq j \leq n,
\]

\[b^{n-1-j} e_{j+1} \equiv Y^{n+2+j} Z^{n-1-j} \mod(X) \quad \text{for } 0 \leq j \leq n-1.
\]

As $l_A(A/J) = 4^{n+1}/2 = e_{X_A}(A/p^{(n)})$ (cf. (2.3)), by the canonical inequalities

\[l_A(A/J) \geq l_A(A/(X) + I) \geq l_A(A/(X) + p^{(n)}) \geq e_{X_A}(A/p^{(n)})
\]

we get $J = (X) + I = (X) + p^{(n)}$. Hence $p^{(n)} = I + X p^{(n)}$ so that $p^{(n)} = I$ by Nakayama’s lemma.

Corollary (4.7). $R_s(p)$ is a Gorenstein ring, if $q = (k+1)p$.

Proof. By (4.6) and its proof we see $(X, b) + p^{(n)} = (X) + (Z^{2n}, YZ, Y^{2n+1})$ so that

\[l_A(A/(X, b) + p^{(n)}) = 4n = e_{X_A}(A/(b) + p^{(n)})
\]
for $1 \leq n \leq k + 1$. Hence $A/(b) + p^{(n)}$ is a Cohen-Macaulay ring, which proves by (2.2) and (4.3) the assertion.

Proposition (4.8). Suppose $q < (k + 1)p$. Then $p^{(n)} = p^n + \sum_{j=1}^{k+2} e_j p^{(n-j)}$ for $k + 2 \leq n \leq 2k + 2$.

Proof. Let $I = p^n + \sum_{j=1}^{k+2} e_j p^{(n-j)}$ and

$$J = (X) + (Z^{2n-1}, YZ^{2n-2}, \ldots, Y^{n-k} Z^{n+k+1})$$

$$+ (Y^{n-k} Z^{n+k}, Y^{n-k+1} Z^{n+k-1}, \ldots, Y^n Z^n)$$

$$+ (Y^{n+2} Z^{n-1}, Y^{n+3} Z^{n-2}, \ldots, Y^{n+k+2} Z^{n-k-1})$$

$$+ (Y^{n+k+4} Z^{n-k-2}, Y^{n+k+5} Z^{n-k-3}, \ldots, Y^{2n+2}).$$

Then $(X) + I \supseteq J$, because

$$a^{n-k-2-j} b^j e_{k+2} \equiv (1)^{k+j} Y^j Z^{2n-1-j} \mod(X)$$
for $0 \leq j \leq n - k - 2$,

$$a^{k-j} b^{n-k+j} \equiv (1)^{n-j} Y^{n-j+k} Z^{n+k-j} \mod(X)$$
for $0 \leq j \leq k$,

$$b^{n-j-1} e_{j+1} \equiv (1)^{n-j-1} Y^{n+j+2} Z^{n-j-1} \mod(X)$$
for $0 \leq j \leq k$,

$$b^{n-k-2-j} e_{k+1} e_{j+1} \equiv (1)^{n-k-j} Y^{n+k+4+j} Z^{n-k-2-j} \mod(X)$$
for $0 \leq j \leq n - k - 2$.

Therefore as $l_A(A/J) = e_X e_A/(p^{(n)})$, we get similarly as in the proof of (4.6) that $J = (X) + I = (X) + p^{(n)}$. Hence $p^{(n)} = I$.

Proposition (4.9). Suppose that $q - kp < (k + 1)p - q$. Then

$$p^{(n)} = p^n + f p^{(n-2k-3)} + \sum_{j=1}^{k+2} e_j p^{(n-j)}$$

for $2k + 3 \leq n \leq 3k + 3$.

Proof. We put $I = p^n + f p^{(n-2k-3)} + \sum_{j=1}^{k+2} e_j p^{(n-j)}$ and

$$J = (X) + (Z^{2n-2}, YZ^{2n-3}, \ldots, Y^{n-2k-3} Z^{n+2k+1})$$

$$+ (Y^{n-2k-1} Z^{n+2k}, Y^{n-2k} Z^{n+2k-1}, \ldots, Y^{n-k-2} Z^{n+k+1})$$

$$+ (Y^{n-k} Z^{n+k}, Y^{n-k+1} Z^{n+k-1}, \ldots, Y^n Z^n)$$

$$+ (Y^{n+2} Z^{n-1}, Y^{n+3} Z^{n-2}, \ldots, Y^{n+k+2} Z^{n-k-1})$$

$$+ (Y^{n+k+4} Z^{n-k-2}, Y^{n+k+5} Z^{n-k-3}, \ldots, Y^{n+2k+4} Z^{n-2k-2})$$

$$+ (Y^{n+2k+6} Z^{n-2k-3}, Y^{n+2k+7} Z^{n-2k-4}, \ldots, Y^{2n+3}).$$

Then $(X) + I \supseteq J$, because

$$a^{n-2k-3-j} b^j f \equiv (1)^{j+1} Y^j Z^{2n-2-j} \mod(X)$$
for $0 \leq j \leq n - 2k - 3$,

$$a^{k-j-1} b^{n-2k-1+j} f \equiv (1)^{n+j} Y^{n-2k+1+j} Z^{n+2k-j} \mod(X)$$
for $0 \leq j \leq k - 1$,

$$a^{k+j} b^{n-k-j} \equiv (1)^{n-k-j} Y^{n-k-j} Z^{n+k+j} \mod(X)$$
for $0 \leq j \leq k$,

$$b^{n-1-j} e_{j+1} \equiv (1)^{n-1-j} Y^{n+2+j} Z^{n-1-j} \mod(X)$$
for $0 \leq j \leq k$,

$$b^{n-k-2-j} e_{k+1} e_{j+1} \equiv (1)^{n-k-j} Y^{n+k+4+j} Z^{n-k-2-j} \mod(X)$$
for $0 \leq j \leq k$ and

$$b^{n-2k-3-j} (e_{k+1})^2 e_{j+1} \equiv (1)^{n-1-j} Y^{n+2k+6+j} Z^{n-2k-3-j} \mod(X)$$
for $0 \leq j \leq n - 2k - 3$.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Hence we have \(J = (X) + I = (X) + p^{(n)} \) for \(2k + 3 \leq n \leq 3k + 3 \) by the same reason as in the proof of (4.6). Thus \(p^{(n)} = I \).

Corollary (4.10). \(R_*(p) \) is a Gorenstein ring, if \(q - kp < (k + 1)p - q \).

Proof. It suffices to see that \(A/(e_{k+1}, f) + p^{(n)} \) is a Cohen-Macaulay ring for each \(k + 2 \leq n \leq 3k + 2 \) (cf. (2.2) and (4.4)); that is enough to check \(l_A(A/(X, e_{k+1}, f) + p^{(n)}) \leq e \chi_A(A/(e_{k+1}, f) + p^{(n)}) \). However, because

\[
 e \chi_A(A/(e_{k+1}, f) + p^{(n)}) = 4 \cdot l_p(A/(e_{k+1}, f))A_p + p^nA_p
\]

by the associative formula of multiplicity (cf. [8]) and because \(e_{k+1}, f \) forms a super regular sequence in \(A_p \) (cf. [1, (3.1)(3)]) we can easily compute the exact value of \(e \chi_A(A/(e_{k+1}, f) + p^{(n)}) \) in terms of \(n \) and \(k \), that is

\[
 e \chi_A(A/(e_{k+1}, f) + p^{(n)}) = 2(2n - k)(k + 1) \quad (k + 2 \leq n \leq 2k + 2) \;
 = 2(6kn - 5k^2 - 11k - n^2 + 7n - 6) \quad (2k + 3 \leq n \leq 3k + 2),
\]

while we now explicitly have the ideal \((X, e_{k+1}, f) + p^{(n)} \) by (4.6), (4.8) and (4.9) (cf. their proofs, too). Therefore the required inequality \(l_A(A/(X, e_{k+1}, f) + p^{(n)}) \leq e \chi_A(A/(e_{k+1}, f) + p^{(n)}) \) can be directly checked, which we would like to leave to the readers.

Proposition (4.11). Suppose that \(q - kp > (k + 1)p - q > 0 \). Then we have

\[
 (1) \quad p^{(2k+3)} = p^{2k+3} + (f) + \sum_{j=1}^{k+2} e_j p^{(2k+3-j)}.
\]

\[
 (2) \quad p^{(n)} = p^n + f p^{(n-2k-3)} + \sum_{j=1}^{k+2} e_j p^{(n-j)} \quad for \quad 2k + 4 \leq n \leq 3k + 4.
\]

Proof. (1) Let \(I = p^{2k+3} + (f) + \sum_{j=1}^{k+2} e_j p^{(2k+3-j)} \) and

\[
 J = (X) + (Y^{4k+5}, YZ^{4k+4}, \ldots, Y^{k+1}Z^{3k+4})
\]

\[
 + (Y^{k+3}Z^{3k+3}, Y^{k+4}Z^{3k+2}, \ldots, Y^{2k+3}Z^{2k+3})
\]

\[
 + (Y^{2k+5}Z^{2k+2}, Y^{2k+6}Z^{2k+1}, \ldots, Y^{3k+5}Z^{k+2})
\]

\[
 + (Y^{3k+7}Z^{k+1}, Y^{3k+8}Z^k, \ldots, Y^{4k+8}).
\]

Then \((X) + I \supseteq J \), because

\[
 a^{k+1-j}b^j e_{k+2} \equiv (-1)^{j+k} Y^j Z^{4k+5-j} \mod (X) \quad for \quad 0 \leq j \leq k + 1,
\]

\[
 a^{k-j}b^{k+3+j} \equiv (-1)^{k+1+j} Y^{k+3+j} Z^{3k+3-j} \mod (X) \quad for \quad 0 \leq j \leq k,
\]

\[
 b^{2k+2-j}e_{j+1} \equiv (-1)^{j} Y^{2k+5+j} Z^{2k+2-j} \mod (X) \quad for \quad 0 \leq j \leq k,
\]

\[
 b^{k+1-j}e_{k+1} \equiv (-1)^{k+1-j} Y^{3k+7+j} Z^{k+1-j} \mod (X) \quad for \quad 0 \leq j \leq k
\]

and

\[
 f \equiv Y^{4k+8} \mod (X).
\]

As \(l_A(A/J) = e \chi_A(A/p^{(2k+3)}) \), we get \(J = (X) + I = (X) + p^{(2k+3)} \) whence \(p^{(2k+3)} = I \).
Let $I = \mathfrak{p}^n + f\mathfrak{p}^{(n-2k-3)} + \sum_{j=1}^{k+2} e_j\mathfrak{p}^{(n-j)}$ and

$$J = (X) + (Z^{2n-2}, YZ^{2n-3}, \ldots, Y^n Z^{-2k-4} Z^{n+2k+2})$$

$$+ (Y^n Z^{-2k-2} Z^{n+2k+1}, Y^n Z^{-2k-1} Z^{n+2k}, \ldots, Y^n Z^{-2k} Z^{n+k+1})$$

$$+ (Y^n Z^{n+k}, Y^n Z^{n+k-1} Z^{n+k-1}, \ldots, Y^n Z^n)$$

$$+ (Y^{n+2} Z^{n-1}, Y^{n+3} Z^{n-2}, \ldots, Y^{n+k+2} Z^{n-k-1})$$

$$+ (Y^{n+k+4} Z^{n-k-2}, Y^{n+k+3} Z^{n-k-3}, \ldots, Y^{n+2k+5} Z^{-2k-3})$$

$$+ (Y^{n+2k+7} Z^{-2k-4}, Y^{n+2k+8} Z^{-2k-5}, \ldots, Y^{2n+3}).$$

Then $(X) + I \supseteq J$, as

$$a^{n-2k-4-j} b^j (e_{k+2})^2 \equiv (-1)^j Y^j Z^{2n-2-j} \mod(X) \quad \text{for } 0 \leq j \leq n - 2k - 4,$$

$$a^{k-j} b^{n-k-2+j} e_{k+2} \equiv (-1)^n Y^n Z^{n+2k+1-j} \mod(X) \quad \text{for } 0 \leq j \leq k,$$

$$a^{k-j} b^{n-k+j} \equiv (-1)^n Y^n Z^{n+k-2+j} \mod(X) \quad \text{for } 0 \leq j \leq k,$$

$$b^{n-1-j} e_{j+1} \equiv (-1)^n Y^n Z^{n+2j} \mod(X) \quad \text{for } 0 \leq j \leq k,$$

$$b^{n-k-2-j} e_{k+1} e_{j+1} \equiv (-1)^n Y^n Z^{n+2k+1+j} \mod(X) \quad \text{for } 0 \leq j \leq k,$$

$$b^{n-2k-3-j} f \equiv (-1)^n Y^n Z^{n+2k+7} \mod(X) \quad \text{and}$$

$$b^{n-2k-4-j} f e_{j+1} \equiv (-1)^n Y^n Z^{n+2k+7+j} \mod(X)$$

for $0 \leq j \leq n - 2k - 4$.

Because $l_A(A/J) = e_{XA}(A/(\mathfrak{p}^{(n)}))$, we have $J = (X) + I = (X) + \mathfrak{p}^{(n)}$, whence $\mathfrak{p}^{(n)} = I$.

Corollary (4.12). $R_s(\mathfrak{p})$ is a Gorenstein ring, if $q - kp > (k + 1)p - q > 0$.

Proof. By (2.2) and (4.5) we have only to check that $l_A(A/(X, e_{k+2}, f) + \mathfrak{p}^{(n)}) \leq e_{XA}(A/(e_{k+2}, f) + \mathfrak{p}^{(n)})$ for $k + 3 \leq n \leq 3k + 3$. Because we explicitly know the ideals (X, e_{k+2}, f) by (4.6), (4.8) and (4.11) and because

$$e_{XA}(A/(e_{k+2}, f) + \mathfrak{p}^{(n)})$$

$$= 4k n - 2k^2 + 8n - 6k - 4 \quad (k + 3 \leq n \leq 2k + 3),$$

$$= 12k n - 2n^2 + 18n - 10k^2 - 26k - 16 \quad (2k + 4 \leq n \leq 3k + 3)$$

we are able to directly check the required inequality. This completes the proof of Theorem (4.1) as well as that of (4.12).

References

Department of Mathematics, School of Science and Technology, Meiji University, Higashimita, Tama-ku, Kawasaki-shi, Japan

Department of Mathematics, School of Science and Technology, Chiba University, Yayoi-cho, Chiba-shi, Japan

College of Liberal Arts and Sciences, Kitasato University, Kitasato, Sagamihara-shi, Japan