Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Completions and fibrations for topological monoids


Author: Paulo Lima-Filho
Journal: Trans. Amer. Math. Soc. 340 (1993), 127-147
MSC: Primary 55R35; Secondary 14C05, 55P10, 55R05, 55S15
MathSciNet review: 1134758
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that, for a certain class of topological monoids, there is a homotopy equivalence between the homotopy theoretic group completion $ {M^ + }$ of a monoid $ M$ in that class and the topologized Grothendieck group $ \tilde M$ associated to $ M$. The class under study is broad enough to include the Chow monoids effective cycles associated to a projective algebraic variety and also the infinite symmetric products of finite $ {\text{CW}}$-complexes. We associate principal fibrations to the completions of pairs of monoids, showing the existence of long exact sequences for the naïve approach to Lawson homology [Fri91, LF91a]. Another proof of the Eilenberg-Steenrod axioms for the functors $ X \mapsto {\tilde{SP}}(X)$ in the category of finite $ {\text{CW}}$-complexes (Dold-Thom theorem [DT56]) is obtained.


References [Enhancements On Off] (What's this?)

  • [DL59] Albrecht Dold and Richard Lashof, Principal quasi-fibrations and fibre homotopy equivalence of bundles., Illinois J. Math. 3 (1959), 285–305. MR 0101521
  • [DT56] Albrecht Dold and René Thom, Quasifaserungen und unendliche symmetrische Produkte, Ann. of Math. (2) 67 (1958), 239–281 (German). MR 0097062
  • [Fri91] Eric M. Friedlander, Algebraic cycles, Chow varieties, and Lawson homology, Compositio Math. 77 (1991), no. 1, 55–93. MR 1091892
  • [FL] E. Friedlander and H. B. Lawson, Jr., A theory of algebraic cocycles, Ann. of Math. (to appear).
  • [FM91] Eric M. Friedlander and Barry Mazur, Filtrations on the homology of algebraic varieties, Mem. Amer. Math. Soc. 110 (1994), no. 529, x+110. With an appendix by Daniel Quillen. MR 1211371, 10.1090/memo/0529
  • [Ful84] William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620
  • [Hir75] Heisuke Hironaka, Triangulations of algebraic sets, Algebraic geometry (Proc. Sympos. Pure Math., Vol. 29, Humboldt State Univ., Arcata, Calif., 1974) Amer. Math. Soc., Providence, R.I., 1975, pp. 165–185. MR 0374131
  • [Hoy66] William L. Hoyt, On the Chow bunches for different projective embeddings of a complete variety, Amer. J. Math. 88 (1966), 273–278. MR 0200271
  • [Law89] H. Blaine Lawson Jr., Algebraic cycles and homotopy theory, Ann. of Math. (2) 129 (1989), no. 2, 253–291. MR 986794, 10.2307/1971448
  • [LF89] P. C. Lima-Filho, Homotopy groups of cycle spaces, Ph.D. thesis, SUNY, Stony Brook, N.Y., 1989.
  • [LF91a] -, Lawson homology for quasiprojective varieties, Compositio Math. 77 (1991).
  • [LF91b] -, On the generalized cycle map, Chicago, 1991.
  • [May72] J. P. May, The geometry of iterated loop spaces, Springer-Verlag, Berlin-New York, 1972. Lectures Notes in Mathematics, Vol. 271. MR 0420610
  • [May75] J. Peter May, Classifying spaces and fibrations, Mem. Amer. Math. Soc. 1 (1975), no. 1, 155, xiii+98. MR 0370579
  • [Mil57] John Milnor, The geometric realization of a semi-simplicial complex, Ann. of Math. (2) 65 (1957), 357–362. MR 0084138
  • [Mil67] R. James Milgram, The bar construction and abelian 𝐻-spaces, Illinois J. Math. 11 (1967), 242–250. MR 0208595
  • [MS76] D. McDuff and G. Segal, Homology fibrations and the “group-completion” theorem, Invent. Math. 31 (1975/76), no. 3, 279–284. MR 0402733
  • [Qui] D. Quillen, The group completion of a topological monoid, unpublished.
  • [Qui73] Daniel Quillen, Higher algebraic 𝐾-theory. I, Algebraic 𝐾-theory, I: Higher 𝐾-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Springer, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341. MR 0338129
  • [Sam55] P. Samuel, Méthodes d’algèbre abstraite en géométrie algébrique, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 4, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955 (French). MR 0072531
  • [Seg74] Graeme Segal, Categories and cohomology theories, Topology 13 (1974), 293–312. MR 0353298
  • [Sha74] I. R. Shafarevich, Basic algebraic geometry, Springer-Verlag, New York-Heidelberg, 1974. Translated from the Russian by K. A. Hirsch; Die Grundlehren der mathematischen Wissenschaften, Band 213. MR 0366917
  • [Ste51] Norman Steenrod, The Topology of Fibre Bundles, Princeton Mathematical Series, vol. 14, Princeton University Press, Princeton, N. J., 1951. MR 0039258
  • [Ste67] N. E. Steenrod, A convenient category of topological spaces, Michigan Math. J. 14 (1967), 133–152. MR 0210075
  • [Whi78] George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 55R35, 14C05, 55P10, 55R05, 55S15

Retrieve articles in all journals with MSC: 55R35, 14C05, 55P10, 55R05, 55S15


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1993-1134758-4
Article copyright: © Copyright 1993 American Mathematical Society