Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Removing index 0 fixed points for area preserving maps of two-manifolds


Author: Edward E. Slaminka
Journal: Trans. Amer. Math. Soc. 340 (1993), 429-445
MSC: Primary 58F20; Secondary 54H20, 58F10
DOI: https://doi.org/10.1090/S0002-9947-1993-1145963-5
MathSciNet review: 1145963
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using the method of free modifications developed by M. Brown and extended to area preserving homeomorphisms, we prove the following fixed point removal theorem.

Theorem. Let $ h:M \to M$ be an orientation preserving, area preserving homeomorphism of an orientable two-manifold $ M$ having an isolated fixed point $ p$ of index 0. Given any open neighborhood $ N$ of $ p$ such that $ N \cap \operatorname{Fix}(h) = p$, there exists an area preserving homeomorphism $ \hat h$ such that

(i)

$\displaystyle \hat h = h\;on\;\overline {M - N} $

and

(ii) $ \hat h$ is fixed point free on $ N$.

Two applications of this theorem are the second fixed point for the topological version of the Conley-Zehnder theorem on the two-torus, and a new proof of the second fixed point for the Poincaré-Birkhoff Fixed Point Theorem.


References [Enhancements On Off] (What's this?)

  • [Ar] V. I. Arnold, Mathematical methods of classical mechanics (Appendix 9), Springer-Verlag, Berlin, Heidelberg, and New York, 1978.. MR 0690288 (57:14033b)
  • [B1] G. D. Birkhoff, Proof of Poincaré"s geometric theorem, Trans. Amer. Math. Soc. 14 (1913), 14-22. MR 1500933
  • [B2] -, An extension of Poincaré's last geometric theorem, Acta Math. 47 (1925), 297-311.
  • [BW] L. E. J. Brouwer, Beweis des ebenen Translationssatzes, Math. Ann. 72 (1912), 27-54. Satz 1.38. MR 1511684
  • [Br] M. Brown, A new proof of Brouwer's Lemma on translation arcs, Houston J. Math. 10 (1984), 35-41. MR 736573 (85h:54080)
  • [Br1] -, Homeomorphisms of two-dimensional manifolds, Houston J. Math. 11 (1985), 455-469. MR 837985 (87g:57020)
  • [BN] M. Brown and W. D. Neumann, Proof of the Poincaré-Birkhoff fixed point theorem, Michigan Math. J. 24 (1977), 21, 31. MR 0448339 (56:6646)
  • [Ca] P. Carter, An improvement of the Poincaré-Birkhoff fixed point theorem, Trans. Amer. Math. Soc. 269 (1982), 285-299. MR 637039 (84h:54041)
  • [CZ] C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of Arnold, Invent. Math. 73 (1983), 33-49. MR 707347 (85e:58044)
  • [Fr] J. Franks, Recurrence and fixed points of surface homeomorphism, Ergodic Theory Dynamical Systems 8 (1988), 99-107. MR 967632 (90d:58124)
  • [OU] J. C. Oxtoby and S. M. Ulam, Measure-preserving homeomorphisms and metrical transitivity, Ann. of Math. (2) 42 (1941), 874-920. MR 0005803 (3:211b)
  • [PS] S. Pelikan and E. E. Slaminka, A bound for the fixed point index of area preserving homeomorphisms of two manifolds, Ergodic Theory Dynamical Systems 7 (1987), 463-479. MR 912377 (89a:58018)
  • [Sc] B. Schmitt, Sur les plongements, admettant zero ou un point fixe, du disque dans le plan, Topology 14 (1975), 357-365. MR 0397739 (53:1597)
  • [ST] C. Simon and C. Titus, Removing index-zero singularities with $ {C^1}$-small perturbations, Dynamical Systems-Warwick 1974 (Proc. Sympos. Appl. Topology and Dynamical Systems, Univ. Warwick, Coventry 1973/74), Lecture Notes in Math., vol. 468, Springer, Berlin, 1975, pp. 278-286. MR 0650643 (58:31254)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F20, 54H20, 58F10

Retrieve articles in all journals with MSC: 58F20, 54H20, 58F10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1145963-5
Keywords: Fixed point, area preserving, fixed point index
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society