Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multivariate discrete splines and linear Diophantine equations


Author: Rong Qing Jia
Journal: Trans. Amer. Math. Soc. 340 (1993), 179-198
MSC: Primary 41A15; Secondary 11D04, 39A10, 39A70, 41A63
DOI: https://doi.org/10.1090/S0002-9947-1993-1159194-6
MathSciNet review: 1159194
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we investigate the algebraic properties of multivariate discrete splines. It turns out that multivariate discrete splines are closely related to linear diophantine equations. In particular, we use a solvability condition for a system of linear diophantine equations to obtain a necessary and sufficient condition for the integer translates of a discrete box spline to be linearly independent. In order to understand the local structure of discrete splines we develop a general theory for certain systems of linear partial difference equations. Using this theory we prove that the integer translates of a discrete box spline are locally linearly independent if and only if they are linearly independent.


References [Enhancements On Off] (What's this?)

  • [1] A. Ben-Artzi and A. Ron, Translates of exponential box splines and their related spaces, Trans. Amer. Math. Soc. 309 (1988), 683-710. MR 961608 (89m:41008)
  • [2] C. de Boor and R. DeVore, Approximation by smooth multivariate splines, Trans. Amer. Math. Soc. 276 (1983), 775-788. MR 688977 (84j:41015)
  • [3] C. de Boor and K. Höllig, $ B$-splines from parallelepipeds, J. Analyse Math. 42 (1982/83), 99-115. MR 729403 (86d:41008)
  • [4] E. Cohen, T. Lyche, and R. Riesenfeld, Discrete box splines and refinement algorithms, Computer Aided Geometric Design 1 (1984), 131-148.
  • [5] W. Dahmen, On multivariate $ B$-splines, SIAM J. Numer. Anal. 17 (1980), 179-191. MR 567267 (81c:41020)
  • [6] W. Dahmen and C. A. Micchelli, Recent progress in multivariate splines, Approximation Theory IV (C. K. Chui, L. L. Schumaker, and J. Ward, eds.), Academic Press, New York, 1983, pp. 27-121. MR 754343 (85h:41013)
  • [7] -, Translates of multivariate splines, Linear Algebra Appl. 52/53 (1983), 217-234. MR 709352 (85e:41033)
  • [8] -, Subdivision algorithms for the generation of box spline surfaces, Computer Aided Geometric Design 1 (1984), 115-129.
  • [9] -, On the local linear independence of translates of a box spline, Studia Math. 82 (1985), 243-263. MR 825481 (87k:41008)
  • [10] -, On the solution of certain systems of partial difference equations and linear dependence of translates of box splines, Trans. Amer. Math. Soc. 292 (1985), 305-320. MR 805964 (86k:41014)
  • [11] -, Algebraic properties of discrete box splines, Constr. Approx. 3 (1987), 209-221. MR 889556 (88e:41028)
  • [12] -, The number of solutions to linear diophantine equations and multivariate splines, Trans. Amer. Math. Soc. 308 (1988), 509-532. MR 951619 (90f:11018)
  • [13 -, Multivariate $ E$-splines, Adv] in Math. 76 (1989), 33-93. MR 1004486 (90m:41020)
  • [14] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974. MR 600654 (82a:00006)
  • [15] R. Q. Jia, Linear independence of translates of a box spline, J. Approx. Theory 40 (1984), 158-160. MR 732698 (85h:41025)
  • [16] -, Local linear independence of the translates of a box spline, Constr. Approx. 1 (1985), 175-182. MR 891538 (88d:41017)
  • [17] -, Symmetric magic squares and multivariate splines, preprint 1991.
  • [18] R. Q. Jia, S. D. Riemenschneider, and Z. W. Shen, Dimension of kernels of linear operators, Amer. J. Math. 114 (1992), 157-184. MR 1147721 (93b:47002)
  • [19] -, Solvability of systems of linear operator equations, preprint 1991.
  • [20] A. Ron, Exponential box splines, Constr. Approx. 4 (1988), 357-378. MR 956173 (89j:41017)
  • [21] -, A necessary and sufficient condition for the linear independence of the integer translates of a compactly supported distribution, Constr. Approx. 5 (1989), 297-308. MR 996932 (90g:41019)
  • [22] W. Rudin, Functional analysis, McGraw-Hill, New York, 1973. MR 0365062 (51:1315)
  • [23] C. C. Sims, Abstract algebra, Wiley, New York, 1984. MR 746307 (86c:00003)
  • [24] Th. Skolem, Diophantine Gleichungen, Chelsea, New York, 1950.
  • [25] R. Stanley, Enumerative combinatorics, Vol. 1, Wadsworth, Belmont, Calif., 1986.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A15, 11D04, 39A10, 39A70, 41A63

Retrieve articles in all journals with MSC: 41A15, 11D04, 39A10, 39A70, 41A63


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1159194-6
Keywords: Multivariate discrete splines, linear diophantine equations, linear independence, translates, partial difference equations
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society