Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Unipotent representations and reductive dual pairs over finite fields


Authors: Jeffrey Adams and Allen Moy
Journal: Trans. Amer. Math. Soc. 340 (1993), 309-321
MSC: Primary 20G05; Secondary 20C15, 20G40
DOI: https://doi.org/10.1090/S0002-9947-1993-1173855-4
MathSciNet review: 1173855
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Consider the representation correspondence for a reductive dual pair $ ({G_1},{G_2})$ over a finite field. We consider the question of how the correspondence behaves for unipotent representations. In the special case of cuspidal unipotent representations, and a certain fundamental situation, that of "first occurrence", the representation correspondence takes a cuspidal unipotent representation of $ {G_1}$ to one of $ {G_2}$. This should serve as a fundamental case in studying the correspondence in general over both finite and local fields.


References [Enhancements On Off] (What's this?)

  • [A] J. Adams, $ L$-functoriality for dual pairs, Astèrisque-Orbites Unipotentes et Représentations, 171-172 (1989), 85-129. MR 1021501 (91e:22020)
  • [C] R. Carter, Finite groups of Lie type: Conjugacy classes and complex characters, Wiley, New York, 1985. MR 794307 (87d:20060)
  • [DL] P. Deligne and G. Lusztig, Representations of reductive groups over finite fields, Ann. of Math. 103 (1976), 103-161. MR 0393266 (52:14076)
  • [H1] R. Howe, Invariant theory and duality for classical groups over finite fields, preprint.
  • [H2] -, $ {L^2}$-duality for stable reductive dual pairs, preprint.
  • [K] S. Kudla, On the local theta-correspondence, Invent. Math. 83 (1986), 229-255. MR 818351 (87e:22037)
  • [L1] G. Lusztig, Characters of reductive groups over a finite field, Princeton Univ. Press, Princeton, N.J., 1984. MR 742472 (86j:20038)
  • [L2] -, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), 125-175. MR 0463275 (57:3228)
  • [LS] G. Lusztig and B. Srinivasan, The characters of the finite unitary groups, J. Algebra 49 (1977), 167-171. MR 0453886 (56:12139)
  • [MVW] C. Moeglin, M. F. Vignéras and J. L. Waldspurger, Correspondances de Howe sur un corps $ p$-adique, Lecture Notes in Math., vol. 1291, Springer, Berlin, 1987.
  • [S] B. Srinivasan, Weil representations of classical groups, Invent. Math. 51 (1979), 143-153. MR 528020 (81d:20036)
  • [V] D. Vogan, Unitary representations of reductive Lie groups, Princeton Univ. Press, Princeton, N.J., 1987. MR 908078 (89g:22024)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20G05, 20C15, 20G40

Retrieve articles in all journals with MSC: 20G05, 20C15, 20G40


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1173855-4
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society