Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Solutions to the nonautonomous bistable equation with specified Morse index. I. Existence


Authors: Nicholas D. Alikakos, Peter W. Bates and Giorgio Fusco
Journal: Trans. Amer. Math. Soc. 340 (1993), 641-654
MSC: Primary 34B15; Secondary 34E15
DOI: https://doi.org/10.1090/S0002-9947-1993-1167183-0
MathSciNet review: 1167183
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We investigate the existence of unstable solutions of specified Morse index for the equation $ {\varepsilon ^2}{u_{xx}} - f(x,u) = 0$ on a finite interval and Neumann boundary conditions.


References [Enhancements On Off] (What's this?)

  • [ABF] N. D. Alikakos, P. W. Bates, and G. Fusco, Solutions to the nonautonomous bistable equation with specified Morse index. Part II: The shape of solutions (in preparation).
  • [A] S. Angenent, The Morse-Smale property for a semilinear parabolic equation, J. Differential Equations 62 (1986), 427-442. MR 837763 (87e:58115)
  • [AMP] S. B. Angenent, J. Mallet-Paret, and L. A. Peletier, Stable transition layers in a semilinear boundary value problem, J. Differential Equations 67 (1987), 212-242. MR 879694 (88d:34018)
  • [AW] D. G. Aronson and H. F. Weinberger, Nonlinear diffusion in population genetics, combustion, and nerve propagation, Lecture Notes in Math., vol. 446, Springer-Verlag, New York, 1975. MR 0427837 (55:867)
  • [BV] A. V. Babin and M. I. Vishik, Unstable invariant sets of semigroups of nonlinear operators and their perturbations, Russian Math. Surveys 41 (1986), 1-46. MR 863873 (88b:47091)
  • [BF1] P. Brunovsky and B. Fiedler, Connecting orbits in scalar reaction-diffusion equations, Dynam. Report. 1 (1988), 57-89. MR 945964 (89j:58071)
  • [BF2] -, Connecting orbits in scalar reaction-diffusion equations. II: The complete solution, preprint.
  • [CP1] J. Carr and R. L. Pego, Metastable patterns in solutions of $ {u_t} = {\varepsilon ^2}{u_{xx}} - f(u)$, Comm. Pure Appl. Math. 42 (1989), 523-576. MR 997567 (90f:35091)
  • [CP2] -, Invariant manifolds for metastable patterns in $ {u_t} = {\varepsilon ^2}{u_{xx}} - f(u)$, Proc. Roy. Soc. Edinburgh Sect. A 116 (1990), 133-160. MR 1076358 (91i:35009)
  • [Fi] P. C. Fife, Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomath., vol. 28, Springer-Verlag, New York, 1979. MR 527914 (80g:35001)
  • [Fu] G. Fusco, A geometric approach to the dynamics of $ {u_t} = {\varepsilon ^2}{u_{xx}} + f(u)$ for small $ \varepsilon $, Problems Involving Change of Type (Stuttgart, 1988), Lecture Notes in Physics, vol. 359, Springer-Verlag, New York, 1990, pp. 175-190. MR 1062209 (91m:35018)
  • [FH1] G. Fusco and J. K. Hale, Slow motion manifolds, dormant instability and singular perturbations, Dynam. Differential Equations 1 (1989), 75-94. MR 1010961 (90i:35131)
  • [FH2] -, Stable equilibria in a scalar parabolic equation with variable diffusion, SIAM J. Math. Anal. 16 (1985), 1152-1164. MR 807902 (87c:35078)
  • [G] M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Differential Geom. 26 (1987), 285-314. MR 906392 (89b:53005)
  • [H] J. K. Hale, Asymptotic behavior of dissipative systems, Math Surveys Monographs, vol. 25, Amer. Math. Soc., Providence, R.I., 1989. MR 941371 (89g:58059)
  • [He1] D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Math., vol. 840, Springer-Verlag, New York, 1981. MR 610244 (83j:35084)
  • [He2] -, Some infinite dimensional Morse-Smale systems defined by parabolic equations, J. Differential Equations 59 (1985), 165-205. MR 804887 (86m:58080)
  • [K] H. L. Kurland, Monotone and oscillatory equilibrium solutions of a problem arising in population genetics, Contemp. Math., vol. 17, Amer., Math. Soc., Providence, R.I., 1983, pp. 323-342. MR 706107 (84i:92050)
  • [L] O. A. Ladyzenskaya, On the determination of minimal global $ B$-attractors for semigroups generated by boundary value problems for nonlinear dissipative partial differential equations, Steklov Math. Inst. Report E-3-87, Leningrad, 1987.
  • [P1] L. A. Peletier, On a non-linear diffusion equation arising in population genetics, Lecture Notes in Math., vol. 564, Springer-Verlag, New York, 1976, pp. 365-371. MR 0604954 (58:29273)
  • [P2] -, A non-linear eigenvalue problem occurring in population genetics, Lecture Notes in Math., vol. 655, Springer-Verlag, New York, 1978, 170-187.
  • [Pr] H. Prüffer, Neue Herleitung der Sturm-Liouvilleschen Reihenentwicklung stetiger Funktionen, Math. Ann. 95 (1926), 499-518. MR 1512291
  • [R] C. Rocha, Generic properties of equilibria of reaction-diffusion equations with variable diffusion, Proc. Roy. Soc. Edinburgh Sect. A 101 (1985), 45-55. MR 824206 (87h:35025)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34B15, 34E15

Retrieve articles in all journals with MSC: 34B15, 34E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1993-1167183-0
Article copyright: © Copyright 1993 American Mathematical Society

American Mathematical Society