Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Co-Hopficity of Seifert-bundle groups


Authors: F. González-Acuña, R. Litherland and W. Whitten
Journal: Trans. Amer. Math. Soc. 341 (1994), 143-155
MSC: Primary 57M05; Secondary 20C99, 55R05, 55R10, 57N10
DOI: https://doi.org/10.1090/S0002-9947-1994-1123454-6
MathSciNet review: 1123454
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A group $ G$ is cohopfian, if every monomorphism $ G \to G$ is an automorphism. In this paper, we answer the cohopficity question for the fundamental groups of compact Seifert fiber spaces (or Seifert bundles, in the current vernacular). If $ M$ is a closed Seifert bundle, then the following are equivalent: (a) $ {\pi _1}M$ is cohopfian; (b) $ M$ does not cover itself nontrivially; (c) $ M$ admits a geometric structure modeled on $ {S^3}$ or on $ {\tilde{\text{SL}_2\mathbf{R}}}$. If $ M$ is a compact Seifert bundle with nonempty boundary, then $ {\pi _1}M$ is not cohopfian.


References [Enhancements On Off] (What's this?)

  • [BS] F. Bonahon and L. Siebenmann, The classification of Seifert fibered $ 3$-orbifolds, LMS Lecture Note Ser., 95, London Math. Soc., 1985, pp. 19-85. MR 827297 (87k:57012)
  • [Da] R. J. Daverman, Manifolds with finite first homology as codimension $ 2$ fibrators, preprint.
  • [Ep] D. B. A. Epstein, Periodic flows on $ 3$-manifolds, Ann. of Math. (2) 95 (1972), 66-82. MR 0288785 (44:5981)
  • [GG] J. C. Gómez-Larrañaga and F. González-Acuña, Lusternik-Schnirelmann category of $ 3$-manifolds, Topology (to appear).
  • [GW] F. González-Acuña and W. Whitten, Imbeddings of three-manifold groups, Mem. Amer. Math. Soc. No. 474, 1992. MR 1117167 (93f:57010)
  • [He] W. Heil, On $ {P^2}$-irreducible $ 3$-manifolds, Bull. Amer. Math. Soc. 75 (1969), 772-775. MR 0251731 (40:4958)
  • [J] W. Jaco, Lectures on three-manifold topology, CBMS Regional Conf. Ser. in Math., vol. 43, Amer. Math. Soc., Providence, R.I., 1980. MR 565450 (81k:57009)
  • [MS] C. F. Miller and P. E. Schupp, Embeddings into Hopfian groups, J. Algebra 17 (1971), 171-176. MR 0269728 (42:4623)
  • [NR] W. D. Neumann and F. Raymond, Seifert manifolds, plumbing, $ \mu $-invariants and orientation reversing maps, Lecture Notes in Math., vol. 664, Springer-Verlag, Berlin and New York, pp. 162-195.
  • [O] P. Orlik, Seifert manifolds, Lecture Notes in Math., vol. 291, Springer-Verlag, Berlin and New York, 1972. MR 0426001 (54:13950)
  • [OVZ] P. Orlik, E. Vogt, and H. Zieschang, Zur Topolgie gefasterter dreidimensionaler Mannigfaltigkeiten, Topology 6 (1967), 49-64. MR 0212831 (35:3696)
  • [Sc] P. Scott, The geometries of $ 3$-manifolds, Bull. London Math. Soc. 15 (1983), 401-487. MR 705527 (84m:57009)
  • [Sc$ _{1}$] -, There are no fake Siefert fiber spaces with infinite $ {\pi _1}$, Ann. of Math. (2) 117 (1983), 35-70. MR 683801 (84c:57008)
  • [S] H. Seifert, Topologie dreidimensionaler gefaserter Räume, Acta Math. 60 (1933), 147-238. MR 1555366
  • [Th] W. P. Thurston, The geometry and topology of $ 3$-manifolds, Lecture Notes, Princeton Univ., 1977.
  • [To] J. Tollefson, On $ 3$-manifolds that cover themselves, Michigan Math. J. 16 (1969), 103-109. MR 0243532 (39:4853)
  • [Wa] F. Waldhausen, On irreducible $ 3$-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56-88. MR 0224099 (36:7146)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57M05, 20C99, 55R05, 55R10, 57N10

Retrieve articles in all journals with MSC: 57M05, 20C99, 55R05, 55R10, 57N10


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1123454-6
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society