Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Subgroup rigidity in finite-dimensional group algebras over $ p$-groups


Author: Gary Thompson
Journal: Trans. Amer. Math. Soc. 341 (1994), 423-447
MSC: Primary 20C05; Secondary 16S34, 20C10, 20C11
MathSciNet review: 1132878
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In 1986, Roggenkamp and Scott proved in [RS1]

Theorem 1.1. Let $ G$ be a finite $ p$-group for some prime $ p$, and $ S$ a local or semilocal Dedekind domain of characteristic 0 with a unique maximal ideal containing $ p$ (for example, $ S = {\mathbb{Z}_p}$ where $ {\mathbb{Z}_p}$ is the $ p$-adic integers). If $ H$ is a subgroup of the normalized units of $ SG$ with $ \vert H\vert = \vert G\vert$, then $ H$ is conjugate to $ G$ by an inner automorphism of $ SG$.

In the Appendix of a later paper [S], Scott outlined a possible proof of a related result:

Theorem 1.3. Let $ S$ be a complete, discrete valuation domain of characteristic 0 having maximal ideal $ \wp $ and residue field $ F \cong S/\wp $ of characteristic $ p$. Let $ G$ be a finite $ p$-group, and let $ U$ be a finite group of normalized units in $ SG$. Then there is a unit $ w$ in $ SG$ such that $ wU{w^{ - 1}} \leq G$.

The author later filled in that outline to give a complete proof of Theorem 1.3 and, at the urging of Scott, has been able to extend that result to

Theorem 1.2. Let $ S$ be a complete, discrete valuation ring of characteristic 0 having maximal ideal $ \wp $ containing $ p$. Let $ A$ be a local $ S$-algebra that is finitely generated as an $ S$-module, and let $ G$ be a finite $ p$-group. Then any finite, normalized subgroup of the $ S$-algebra $ \mathcal{A} = A{ \otimes _S}SG$ is conjugate to a subgroup of $ G$.


References [Enhancements On Off] (What's this?)

  • [CR1] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. Reprint of the 1962 original; A Wiley-Interscience Publication. MR 1013113
  • [CR2] -, Methods of representation theory, vol. 1, Wiley Interscience, 1962.
  • [D] Everett C. Dade, Deux groupes finis distincts ayant la même algèbre de groupe sur tout corps, Math. Z. 119 (1971), 345–348 (French). MR 0280610
  • [Hi] G. Higman, Units in group rings, D. Phil, thesis, Oxford Univ., 1940.
  • [Hu] Thomas W. Hungerford, Algebra, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1974. MR 0354211
  • [K] Gregory Karpilovsky, Unit groups of classical rings, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1988. MR 978631
  • [M] Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
  • [R1] K. W. Roggenkamp, Picard groups of integral group rings of nilpotent groups, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 477–485. MR 933437
  • [R2] -, Subgroup rigidity of $ p$-adic group rings, preprint, June, 1989.
  • [RS1] K. W. Roggenkamp and L. L. Scott, The isomorphism problem for integral group rings of finite nilpotent groups, Proceedings of groups—St. Andrews 1985, London Math. Soc. Lecture Note Ser., vol. 121, Cambridge Univ. Press, Cambridge, 1986, pp. 291–299. MR 896526
  • [RS2] Klaus Roggenkamp and Leonard Scott, Isomorphisms of 𝑝-adic group rings, Ann. of Math. (2) 126 (1987), no. 3, 593–647. MR 916720, 10.2307/1971362
  • [RS3] -, On a conjecture of Zassenhaus for finite group rings, preprint (submitted).
  • [S] Leonard L. Scott, Recent progress on the isomorphism problem, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 259–273. MR 933364
  • [Se] Sudarshan K. Sehgal, Topics in group rings, Monographs and Textbooks in Pure and Applied Math., vol. 50, Marcel Dekker, Inc., New York, 1978. MR 508515
  • [T] G. Thompson, Subgroup rigidity in group rings, Ph.D. thesis, Univ. of Virginia, 1990.
  • [W] Alfred Weiss, Rigidity of 𝑝-adic 𝑝-torsion, Ann. of Math. (2) 127 (1988), no. 2, 317–332. MR 932300, 10.2307/2007056
  • [We] Edwin Weiss, Algebraic number theory, McGraw-Hill Book Co., Inc., New York-San Francisco-Toronto-London, 1963. MR 0159805
  • [Wh] A. Whitcomb, The group ring problem, Ph.D. thesis, Univ. of Chicago, 1968.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20C05, 16S34, 20C10, 20C11

Retrieve articles in all journals with MSC: 20C05, 16S34, 20C10, 20C11


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1994-1132878-2
Article copyright: © Copyright 1994 American Mathematical Society