Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



The structure of hyperfinite Borel equivalence relations

Authors: R. Dougherty, S. Jackson and A. S. Kechris
Journal: Trans. Amer. Math. Soc. 341 (1994), 193-225
MSC: Primary 03E15; Secondary 03H05, 28A05, 28D99
MathSciNet review: 1149121
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the structure of the equivalence relations induced by the orbits of a single Borel automorphism on a standard Borel space. We show that any two such equivalence relations which are not smooth, i.e., do not admit Borel selectors, are Borel embeddable into each other. (This utilizes among other things work of Effros and Weiss.) Using this and also results of Dye, Varadarajan, and recent work of Nadkarni, we show that the cardinality of the set of ergodic invariant measures is a complete invariant for Borel isomorphism of aperiodic nonsmooth such equivalence relations. In particular, since the only possible such cardinalities are the finite ones, countable infinity, and the cardinality of the continuum, there are exactly countably infinitely many isomorphism types. Canonical examples of each type are also discussed.

References [Enhancements On Off] (What's this?)

  • [A] S. Adams, An equivalence relation that is not freely generated, Proc. Amer. Math. Soc. 102 (1988), 565-566. MR 928981 (89d:28014)
  • [CN1] P. Chaube and M. G. Nadkarni, A version of Dye's Theorem for descriptive dynamical systems, Sankhyā Ser. A 49 (1987), 288-304. MR 1056022 (92e:28008a)
  • [CN2] -, On orbit equivalence of Borel automorphisms, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), 255-261. MR 1032712 (91a:28012)
  • [CFW] A. Connes, J. Feldman, and B. Weiss, An amenable equivalence relation is generated by a single transformation, Ergodic Theory Dynamical Systems 1 (1981), 431-450. MR 662736 (84h:46090)
  • [D] H. Dye, On groups of measure preserving transformations. I, Amer. J. Math. 81 (1959), 119-159; II, ibid., 85 (1963), 551-576. MR 0131516 (24:A1366)
  • [E1] E. Effros, Transformation groups and $ {C^\ast}$-algebras, Ann. of Math. (2) 81 (1965), 38-55. MR 0174987 (30:5175)
  • [E2] -, Polish transformation groups and classification problems (L. F. McAuley and M. M. Rao, eds.), General Topology and Modern Analysis, Academic Press, 1980, pp. 217-227. MR 619045 (82k:54064)
  • [FM] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), 289-324. MR 0578656 (58:28261a)
  • [Fr] N. Friedman, Introduction to ergodic theory, Van Nostrand, New York, 1970. MR 0435350 (55:8310)
  • [GM] C. Graham and O. C. McGehee, Essays in commutative harmonic analysis, Springer-Verlag, New York, 1979. MR 550606 (81d:43001)
  • [HO] T. Hamachi and M. Osikawa, Ergodic groups of automorphisms and Krieger's theorems, Sem. Math. Sci. No. 3, Keio Univ., Yokohama, 1981, 113 pp. MR 617740 (84d:46099)
  • [HKL] L. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3 (1990), 903-927. MR 1057041 (91h:28023)
  • [HS] E. Hewitt and K. Stromberg, Real and abstract analysis, Springer-Verlag, New York, 1969. MR 0367121 (51:3363)
  • [Hu] W. Hurewicz, Ergodic theorem without invariant measure, Ann. of Math. (2) 45 (1944), 192-206. MR 0009427 (5:148a)
  • [KW] Y. Katznelson and B. Weiss, The construction of quasi-invariant measures, Israel J. Math. 12 (1972), 1-4. MR 0316679 (47:5226)
  • [K1] A. S. Kechris, Amenable equivalence relations and Turing degrees, J. Symbolic Logic 56 (1991), 182-194. MR 1131739 (93c:03061)
  • [K2] -, The structure of Borel equivalence relations in Polish spaces, Set Theory and the Continuum, (H. Judah, W. Just and W. H. Woodin, eds.), MSRI Publ., Springer-Verlag, 1992, pp. 89-102. MR 1233813 (94h:03093)
  • [K3] -, Countable sections for locally compact group actions, Ergodic Theory Dynamical Systems 12 (1992), 283-295. MR 1176624 (94b:22003)
  • [KP] Yu. I. Kifer and S. A. Pirogov, The decomposition of quasi-invariant measures into ergodic components, Uspekhi Mat. Nauk 27 (1972), 239-240. MR 0419733 (54:7751)
  • [Kr1] W. Krieger, On nonsingular transformations of a measure space. I, Z. Wahrsch. Verw. Gebiete 11 (1969), 83-97. MR 0240279 (39:1628)
  • [Kr2] -, On quasi-invariant measures in uniquely ergodic systems, Invent. Math. 14 (1971), 184-196. MR 0293060 (45:2139)
  • [Kr3] -, On ergodic flows and the isomorphism of factors, Math. Ann. 223 (1976), 19-70. MR 0415341 (54:3430)
  • [Ku] C. Kuratowski, Topology, Vol. 1, Academic Press, New York, 1966. MR 0193605 (33:1823)
  • [MU] D. Mauldin and S. Ulam, Mathematical problems and games, Adv. in Appl. Math. 8 (1987), 281-344. MR 898709 (89g:04005)
  • [Mo] C. C. Moore, Ergodic theory and von Neumann algebras, Proc. Sympos. Pure Math., vol. 38, Part 2, Amer. Math. Soc., Providence, RI, 1982, pp. 179-226. MR 679505 (84f:22013)
  • [Mos] Y. N. Moschovakis, Descriptive set theory, North-Holland, Amsterdam, 1980. MR 561709 (82e:03002)
  • [N1] M. G. Nadkarni, Descriptive ergodic theory, Contemp. Math., vol. 94, Amer. Math. Soc., Providence, RI, 1989, pp. 191-209. MR 1012990 (90h:28021)
  • [N2] -, On the existence of a finite invariant measure, Proc. Indian Acad. Sci. Math. Sci. 100 (1991), 203-220. MR 1081705 (92d:28008)
  • [N3] -, Orbit equivalence and Kakutani equivalence in descriptive setting,, reprint, 1991.
  • [S1] K. Schmidt, Cocycles on ergodic transformation groups, Macmillan, Delhi, 1977. MR 0578731 (58:28262)
  • [S2] -, Algebraic ideas in ergodic theory, CBMS Regional Conf. Ser. in Math., no. 76, Amer. Math. Soc., Providence, RI, 1990. MR 1074576 (92k:28029)
  • [SS] T. Slaman and J. Steel, Definable functions on degrees, Cabal Seminar 81-85, Lecture Notes in Math., vol. 1333, Springer-Verlag, 1988, pp. 37-55. MR 960895 (89m:03033)
  • [SWW] D. Sullivan, B. Weiss, and J. D. M. Wright, Generic dynamics and monotone complete $ {C^\ast}$-algebras, Trans. Amer. Math. Soc. 295 (1986), 795-809. MR 833710 (87k:46142)
  • [Su] C. Sutherland, Orbit equivalence: lectures on Krieger's theorem, Univ. of Oslo Lecture Note Series, no. 23, 1976.
  • [Va] V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191-220. MR 0159923 (28:3139)
  • [Ve1] A. M. Vershik, The action of $ PSL(2,\mathbb{R})$ on $ {P_1}\mathbb{R}$ is approximable, Russian Math. Surveys (1) 33 (1978), 221-222.
  • [Ve2] -, Trajectory theory, Dynamical Systems. II (Ya. G. Sinai, eds.), Springer-Verlag, 1989, pp. 77-98.
  • [Wa] V. M. Wagh, A descriptive version of Ambrose's representation theorem for flows, Proc. Indian Acad. Sci. Math. Sci. 98 (1988), 101-108. MR 994127 (90m:28021)
  • [W1] B. Weiss, Orbit equivalence of nonsingular actions, Ergod. Theory, Monographs Enseign. Math., 29, Univ. Genève, 1981, pp. 77-107. MR 609897 (82j:28011)
  • [W2] -, Measurable dynamics, Conf. Modern Analysis and Probability (New Haven, Conn., 1982) (R. Beals et al., eds.), Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 1984, pp. 395-421. MR 737417 (85j:28027)
  • [W3] -, Countable generators in dynamics--universal minimal models, Measure and Measurable Dynamics (R. D. Mauldin et al., eds.), Contemp. Math., vol. 94, Amer. Math. Soc., Providence, RI, 1989, pp. 321-326.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 03E15, 03H05, 28A05, 28D99

Retrieve articles in all journals with MSC: 03E15, 03H05, 28A05, 28D99

Additional Information

Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society