Invariant subspaces of the Dirichlet shift and pseudocontinuations
Authors:
Stefan Richter and Carl Sundberg
Journal:
Trans. Amer. Math. Soc. 341 (1994), 863-879
MSC:
Primary 47B37; Secondary 30H05, 47A15
DOI:
https://doi.org/10.1090/S0002-9947-1994-1145733-9
MathSciNet review:
1145733
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we study extremal functions for invariant subspaces of the Dirichlet shift, i.e., solutions
of the extremal problem






- [1] L. Brown and A. Shields, Cyclic vectors in the Dirichlet space, Trans. Amer. Math. Soc. 285 (1984), 269-304. MR 748841 (86d:30079)
- [2] L. Carleson, Sets of uniqueness for functions regular in the unit circle, Acta. Math. 87 (1952), 325-345. MR 0050011 (14:261a)
- [3] -, On the zeros of functions with bounded Dirichlet integrals, Math. Z. 56 (1952), 289-295. MR 0051298 (14:458e)
- [4] -, Selected problems on exceptional sets, Van Nostrand, Princeton, N.J., 1967. MR 0225986 (37:1576)
- [5] J. Douglas, Solution of the problem of Plateau, Trans. Amer. Math. Soc. 33 (1931), 263-321. MR 1501590
- [6] R. Douglas, H. Shapiro, and A. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20 (1970), 37-76. MR 0270196 (42:5088)
- [7]
P. Duren, Theory of
-spaces, Pure and Appl. Math., vol. 38, Academic Press, New York, 1970. MR 0268655 (42:3552)
- [8] J. Garnett, Bounded analytic functions, Pure and Appl. Math., vol. 96, Academic Press, New York, 1981. MR 628971 (83g:30037)
- [9] H. Hedenmalm, A factorization theorem for square area-integrable functions, J. Reine Angew. Math. 422 (1991), 45-68. MR 1133317 (93c:30053)
- [10] H. Hedenmalm and A. Shields, Invariant subspaces in Banach spaces of analytic functions, Michigan Math. J. 37 (1990), 91-104. MR 1042516 (91g:46059)
- [11] J. Moeller, On the spectra of some translation invariant spaces, J. Math. Anal. Appl. 4 (1962), 276-296. MR 0150592 (27:588)
- [12] S. Richter, Invariant subspaces in Banach spaces of analytic functions, Trans. Amer. Math. Soc. 304 (1987), 585-616. MR 911086 (88m:47056)
- [13] -, Invariant subspaces of the Dirichlet shift, J. Reine Angew. Math. 386 (1988), 205-220. MR 936999 (89e:47048)
- [14] -, A representation theorem for cyclic analytic two-isometries, Trans. Amer. Math. Soc. 328 (1991). MR 1013337 (92e:47052)
- [15] S. Richter and A. Shields, Bounded functions in the Dirichlet space, Math. Z. 198 (1988), 151-159. MR 939532 (89c:46039)
- [16] S. Richter and C. Sundberg, A formula for the local Dirichlet integral, Michigan Math. J. 38 (1991), 355-379. MR 1116495 (92i:47035)
- [17] -, Multipliers and invariant subspaces of the Dirichlet shift, J. Operator Theory (to appear).
- [18] H. Shapiro, Some remarks on weighted polynomial approximations of holomorphic functions, Math. Sb. 73(115) (1967), 320-330; English transl. in Math. USSR-Sb. 2 (1967), 285-294. MR 0217304 (36:395)
- [19] H. Shapiro and A. Shields, On the zeros of functions with finite Dirichlet integral and some related function spaces, Math. Z. 80 (1962), 217-229. MR 0145082 (26:2617)
- [20]
J. Shapiro, Cluster set, essential range, and distance estimates in
, Michigan Math. J. 34 (1987), 323-336. MR 911808 (89b:30029)
- [21]
D. Stegenga, A geometric condition which implies
, Harmonic Analysis in Euclidean Spaces. Proc. Sympos. Pure Math., vol. 35, part 1, Amer. Math. Soc., Providence, R.I., 1979, pp. 427-430. MR 545283 (80h:30033)
Retrieve articles in Transactions of the American Mathematical Society with MSC: 47B37, 30H05, 47A15
Retrieve articles in all journals with MSC: 47B37, 30H05, 47A15
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1994-1145733-9
Keywords:
Dirichlet space,
invariant subspaces,
pseudocontinuation,
analytic continuation
Article copyright:
© Copyright 1994
American Mathematical Society