Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Carleson measures on spaces of homogeneous type


Authors: Steven C. Gadbois and William T. Sledd
Journal: Trans. Amer. Math. Soc. 341 (1994), 841-862
MSC: Primary 42B25; Secondary 30D55, 42B30
DOI: https://doi.org/10.1090/S0002-9947-1994-1149122-2
MathSciNet review: 1149122
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ X$ be a space of homogeneous type in the sense of Coifman and Weiss $ [{\text{CW}}2]$ and let $ {X^ + } = X \times {{\mathbf{R}}^ + }$. A positive function $ F$ on $ {X^ + }$ is said to have horizontal bounded ratio $ ({\text{HBR}})$ on $ {X^ + }$ if there is a constant $ {A_F}$ so that $ F(x,t) \leq {A_F}F(y,t)$ whenever $ \rho (x,y) < t$. (By Harnack's inequality, a well-known example is any positive harmonic function in the upper half plane.) $ {\text{HBR}}$ is a rich class that is closed under a wide variety of operations and it provides useful majorants for many classes of functions that are encountered in harmonic analysis. We are able to prove theorems in spaces of homogeneous type for functions in $ {\text{HBR}}$ which are analogous to the classical Carleson measure theorems and to extend these results to the functions which they majorize. These results may be applied to obtain generalizations of the original Carleson measure theorem, and of results of Flett's which contain the Hardy-Littlewood theorems on intermediate spaces of analytic functions. Hörmander's generalization of Carleson's theorem is included and it is possible to extend those results to the atomic $ {H^p}$ spaces of Coifman and Weiss.


References [Enhancements On Off] (What's this?)

  • [AB] E. Amar and A. Bonami, Mesures de Carleson d'ordre $ \alpha $ et solutions au bord de l'équation $ \bar \partial $, Bull. Soc. Math. France 107 (1979), 23-48. MR 532560 (80h:32032)
  • [BM] R. Bañuelos and C. N. Moore, Laws of the iterated logarithm, sharp good-$ \lambda $ inequalities and $ {L^p}$-estimates for caloric and harmonic functions, Indiana Math. J. 38 (1989), 315-344. MR 997386 (90k:42035)
  • [B] D. Békollé, Inégalités à poids pour le projecteur de Bergman dans la boule unité de $ {{\mathbf{C}}^n}$, Studia Math. 71 (1982), 305-323.
  • [BP] A. Benedek and R. Panzone, The spaces $ {L^p}$, with mixed norm, Duke Math. J. 28 (1961), 301-324. MR 0126155 (23:A3451)
  • [Cal] A. P. Calderón, Inequalities for the maximal function relative to a metric, Studia Math. 57 (1976), 297-306. MR 0442579 (56:960)
  • [Car] L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. of Math. (2) 76 (1962), 547-559. MR 0141789 (25:5186)
  • [CiWo] J. A. Cima and W. R. Wogen, A Carleson measure theorem for the Bergman space on the ball, J. Operator Theory 7 (1982), 157-165. MR 650200 (83f:46022)
  • [CW1] R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math., vol. 242, Springer-Verlag, 1971. MR 0499948 (58:17690)
  • [CW2] -, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. MR 0447954 (56:6264)
  • [D] P. Duren, Extension of a theorem of Carleson, Bull. Amer. Math. Soc. 75 (1969), 143-146. MR 0241650 (39:2989)
  • [FS] R. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. MR 0284802 (44:2026)
  • [Fl] T. M. Flett, On the rate of growth of mean values of holomorphic and harmonic functions, Proc. London Math. Soc. (3) 20 (1970), 749-768. MR 0268388 (42:3286)
  • [Fu] B. Fuglede, On the theory of potentials in locally compact spaces, Acta Math. 103 (1960), 139-215. MR 0117453 (22:8232)
  • [Gr] I. Graham, The radial derivative, fractional integrals, and comparative growth of means of holomorphic functions on the unit ball in $ {{\mathbf{C}}^n}$, Ann. of Math. Stud., no. 100, Princeton Univ. Press, 1981, pp. 171-178. MR 627757 (83c:32009)
  • [HL1] G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, Math. Ann. 97 (1926), 159-209. MR 1512359
  • [HL2] -, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. 12 (1941), 221-256. MR 0006581 (4:8d)
  • [Ha] W. Hastings, A Carleson measure theorem for Bergman spaces, Proc. Amer. Math. Soc. 52 (1975), 237-241. MR 0374886 (51:11082)
  • [Hö] L. Hörmander, $ {L^p}$ estimates for (pluri-)subharmonic functions, Math. Scand. 20 (1967), 65-78. MR 0234002 (38:2323)
  • [KV] A. Korányi and S. Vági, Singular integrals on homogeneous spaces and some problems of classical analysis, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 25 (1971), 575-648. MR 0463513 (57:3462)
  • [L] D. Luecking, A technique for characterizing Carleson measures on Bergman spaces, Proc. Amer. Math. Soc. 87 (1983), 656-660. MR 687635 (84e:32025)
  • [MS] B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17-92. MR 0199636 (33:7779)
  • [R] W. Rudin, Function theory in the unit ball of $ {{\mathbf{C}}^n}$, Springer-Verlag, 1980. MR 601594 (82i:32002)
  • [RT] F. R. Ruiz and J. L. Torrea, Vector-valued Calderón-Zygmund theory and Carleson measures on spaces of homogeneous nature, Studia Math. 88 (1988), 221-243. MR 932011 (89f:43013)
  • [S] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970. MR 0290095 (44:7280)
  • [SW] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Univ. Press, 1971. MR 0304972 (46:4102)
  • [T] M. H. Taibleson, Fourier analysis on local fields, Math. Notes 15, Princeton Univ. Press, 1975. MR 0487295 (58:6943)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42B25, 30D55, 42B30

Retrieve articles in all journals with MSC: 42B25, 30D55, 42B30


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1149122-2
Keywords: Carleson measure, space of homogeneous type
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society