Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On invertible bimodules and automorphisms of noncommutative rings


Authors: Robert M. Guralnick and Susan Montgomery
Journal: Trans. Amer. Math. Soc. 341 (1994), 917-937
MSC: Primary 16R20; Secondary 16D20
DOI: https://doi.org/10.1090/S0002-9947-1994-1150014-3
MathSciNet review: 1150014
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article, we attempt to generalize the result that for a commutative ring $ R$ the outer automorphism group of $ R$-automorphisms of $ {M_n}(R)$ is abelian of exponent $ n$. It is shown that a slightly weaker stable version of the result is still valid for affine semiprime noetherian pi rings. We also show that the automorphism group of an affine commutative domain of positive dimension acts faithfully on the spectrum of the domain. We investigate other questions involving bimodules and automorphisms and extend a result of Smith on the first Weyl algebra as a fixed ring.


References [Enhancements On Off] (What's this?)

  • [AS] M. Artin and W. Schelter, Integral ring homomorphisms, Adv. Math. 39 (1981), 289-329. MR 614165 (83e:16015)
  • [BG] H. Bass and R. M. Guralnick, Projective modules with free multiples and powers, Proc. Amer. Math. Soc. 96 (1986), 207-208. MR 818444 (87a:13011)
  • [B] A. Braun, An additivity principle for $ p$. $ i$. rings, J. Algebra 96 (1985), 433-441. MR 810539 (87f:16011)
  • [BV] A. Braun and N. Vonessen, Some notes on a theorem of Farkas, preprint.
  • [Br] K. Brown, The representation theory of Noetherian rings, Noncommutative Rings, Math. Sci. Res. Inst. Publ., vol. 24, Springer-Verlag, Berlin and New York, 1992. MR 1230215 (94h:16032)
  • [CR] C. Curtis and I. Reiner, Methods of representation theory with applications to finite groups and orders. II, Wiley, New York, 1987. MR 892316 (88f:20002)
  • [F] D. Farkas, Groups acting on affine algebras, Trans. Amer. Math. Soc. 310 (1988), 485-497. MR 940913 (89i:16029)
  • [G1] R. M. Guralnick, The genus of a module. II: Roiter's theorem, power cancellation, and extension of scalars, J. Number Theory 26 (1987), 149-165. MR 889381 (88j:16008)
  • [G2] -, A question of Stafford about affine pi algebras, Comm. Algebra 18 (1990), 3055-3057. MR 1063350 (91j:16026)
  • [G3] -, Bimodules over pi rings, Methods in Module Theory, Marcel Dekker, New York, 1992, pp. 117-134. MR 1203803 (94a:16001)
  • [GR1] W. H. Gustafson and K. Roggenkamp, Automorphisms and Picard groups of hereditary orders, Texas Tech. Univ. Math. Ser. 15 (1987), 37-52. MR 983895 (90b:16008)
  • [GR2] -, A Mayer-Vietoris sequence for Picard groups, with applications to integral group rings of dihedral and quaternion groups, Illinois J. Math. 32 (1988), 375-406. MR 947034 (90a:11145)
  • [J1] Bao-Ping Jia, Splitting of rank one valuations, Comm. Algebra 19 (1991), 777-794. MR 1102985 (92g:12009)
  • [J2] -, Splitting of primes in extension domains, Comm. Algebra 19 (1991), 2603-2623. MR 1125193 (92h:13009)
  • [K] I. Kaplansky, Commutative rings, Univ. of Chicago Press, Chicago, 1974. MR 0345945 (49:10674)
  • [KO] M. Knus and M. Ojanguran, Théorie de la descente et Algèbres d'Azumaya, Lecture Notes in Math., vol. 389, Springer-Verlag, Berlin and New York, 1974.
  • [MR] J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Wiley, New York, 1987. MR 934572 (89j:16023)
  • [M1] S. Montgomery, Fixed rings of finite automorphism groups of associative rings, Lecture Notes in Math., vol. 818, Springer-Verlag, Berlin and New York, 1980. MR 590245 (81j:16041)
  • [M2] -, A generalized Picard group for prime rings, Banach Center Publ. 26, Part I, PWN-Polish Scientific Publishers, Warsaw, pp. 55-63. MR 1171225 (93g:16026)
  • [MP] S. Montgomery and D. Passman, Outer galois theory of prime rings, Rocky Mountain J. Math. 14 (1984), 305-318. MR 747279 (85f:16045)
  • [RZ] A. Rosenberg and D. Zelinsky, Automorphisms of separable algebras, Pacific J. Math. 11 (1961), 1109-1117. MR 0148709 (26:6215)
  • [Sm] S. P. Smith, Can the Weyl algebra be a fixed ring, Proc. Amer. Math. Soc. 107 (1989), 587-589. MR 962247 (90b:16010)
  • [Sm2] -, An example of a ring Morita equivalent to the Weyl algebra $ {A_1}$, J. Algebra 73 (1981), 552-555. MR 640048 (83a:16004)
  • [S] J. T. Stafford, Endomorphisms of right ideals of the Weyl algebra, Trans. Amer. Math. Soc. 299 (1987), 623-639. MR 869225 (88d:16025)
  • [W] R. Wiegand, Nilpotent elements in Grothendieck rings, Illinois J. Math. 32 (1988), 246-262. MR 945862 (89k:13011)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 16R20, 16D20

Retrieve articles in all journals with MSC: 16R20, 16D20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1150014-3
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society