Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Decompositions for relatively normal lattices


Authors: James B. Hart and Constantine Tsinakis
Journal: Trans. Amer. Math. Soc. 341 (1994), 519-548
MSC: Primary 06D05; Secondary 06A06, 06F20
DOI: https://doi.org/10.1090/S0002-9947-1994-1211409-2
MathSciNet review: 1211409
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Continuing the work begun in Snodgrass and Tsinakis [26, 27], we develop a family of decomposition theorems for classes of relatively normal lattices. These results subsume and are inspired by known decomposition theorems in order-algebra due to P. Conrad and D. B. McAlister. As direct corollaries of the main results, we obtain corresponding decomposition theorems for classes of partially ordered sets.


References [Enhancements On Off] (What's this?)

  • [1] M. Anderson, P. Conrad, and J. Martinez, The lattice of convex $ l$-subgroups of a lattice-ordered group, Lattice-Ordered Groups, Advances and Techniques (A. M. W. Glass and W. C. Holland, eds.), Kluwer Academic, 1989, pp. 105-127. MR 1036075
  • [2] M. Anderson and T. Feil, Lattice-ordered groups, an introduction, Reidel, Dordrecht, 1988. MR 937703 (90b:06001)
  • [3] R. Balbes and P. Dwinger, Distributive lattices, Univ. Missouri Press, Columbia, MO, 1974. MR 0373985 (51:10185)
  • [4] R. Beazer, Hierarchies of distributive lattices satisfying annihilator conditions, J. London Math. Soc. (2) 11 (1975), 216-222. MR 0387141 (52:7987)
  • [5] A. Bigard, K. Keimel, and S. Wolfenstein, Groupes et anneaux réticulés, Springer-Verlag, Berlin, 1977. MR 0552653 (58:27688)
  • [6] G. Bordalo, Strongly $ n$-normal lattices, Indag. Math. (N.S.) 46 (1984), 113-125. MR 749525 (86b:06006)
  • [7] G. Bordalo and H. Priestly, Relative Ockham lattices: their order-theoretic and algebraic characterization, Glasgow Math. J. 32 (1990), 47-66. MR 1045085 (91b:06022)
  • [8] P. Conrad, The structure of a lattice-ordered group with a finite number of disjoint elements, Michigan Math. J. 7 (1960), 171-180. MR 0116059 (22:6854)
  • [9] -, Some structure theorems for lattice-ordered groups, Trans. Amer. Math. Soc. 99 (1961), 212-240. MR 0121405 (22:12143)
  • [10] -, The lattice of all convex $ l$-subgroups of a lattice-ordered group, Czechoslavak. Math. J. 15 (1965), 101-123. MR 0173716 (30:3926)
  • [11] -, Lex-subgroups of lattice-ordered groups, Czechoslavak. Math. J. 18 (1968), 86-103. MR 0225697 (37:1290)
  • [12] -, Lattice-ordered groups, Tulane Univ. lecture notes, New Orleans, 1970.
  • [13] W. H. Cornish, Normal lattices, J. Austral. Math. Soc. 14 (1972), 200-215. MR 0313148 (47:1703)
  • [14] -, $ n$-normal lattices, Proc. Amer. Math. Soc. 45 (1974), 48-53. MR 0340133 (49:4889)
  • [15] P. Crawley and R. P. Dilworth, Algebraic theory of lattices, Prentice-Hall, Englewoods Cliffs, NJ, 1973.
  • [16] B. Davey, Some annihilator conditions on distributive lattices, Algebra Universalis 4 (1974), 316-322. MR 0357261 (50:9729)
  • [17] G. Grätzer, General lattice theory, Academic Press, New York, 1978. MR 509213 (80c:06001b)
  • [18] P. Jaffard, Contribution a l'etude des groupes ordonees, J. Math. Pures Appl. 32 (1953), 208-280.
  • [19] P. Johnstone, Stone spaces, Cambridge Stud. Adv. Math., vol. 3, Cambridge Univ. Press, London and New York, 1980. MR 698074 (85f:54002)
  • [20] M. Mandelker, Relative annihilators in lattices, Duke Math. J. 37 (1970), 377-386. MR 0256951 (41:1606)
  • [21] G. Markowsky and B. K. Rosen, Bases for chain-complete posets, IBM J. Res. Develop. 20 (1976), 138-147. MR 0392706 (52:13523)
  • [22] D. B. McAlister, On multilattice groups. II, Proc. Cambridge Philos. Soc. (1966), 149-164. MR 0190241 (32:7654)
  • [23] R. McKenzie, G. McNulty, and W. Taylor, Algebras, lattices, varieties, vol. 1, Wadsworth and Brooks/Cole, Monterey, CA, 1987.
  • [24] A. Monteiro, L'arithmetique des filtres et les espaces topologiques, De Segundo Symposium de Matematicas-Villavicencio (Mendoza, Buenos Aires), 1954, pp. 129-162. MR 0074805 (17:649b)
  • [25] -, L'arithmetique des filtres et les espaces topologiques. I, II, Notas Lógica Mat. (1974), 29-30.
  • [26] J. Snodgrass and C. Tsinakis, Finite-valued algebraic lattices,, Algebra Universalis 30 (1993), 311-318. MR 1225870 (94f:06012)
  • [27] -, The finite basis theorem for relatively normal lattices, Algebra Universalis (to appear). MR 1303631 (95j:06011)
  • [28] A. Zaanen, Riesz spaces. II, North-Holland Math. Library, vol. 30, North-Holland, Amsterdam, 1983. MR 704021 (86b:46001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 06D05, 06A06, 06F20

Retrieve articles in all journals with MSC: 06D05, 06A06, 06F20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1211409-2
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society