Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Operator semigroups for functional-differential equations with delay


Authors: W. M. Ruess and W. H. Summers
Journal: Trans. Amer. Math. Soc. 341 (1994), 695-719
MSC: Primary 34K30; Secondary 47H20, 47N20
DOI: https://doi.org/10.1090/S0002-9947-1994-1214785-X
MathSciNet review: 1214785
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a strongly continuous operator semigroup can be associated with the functional differential delay equation (FDE)

$\displaystyle \left\{ {\begin{array}{*{20}{c}} {x\prime(t) + ax(t) + Bx(t) \bac... ...{\mathbb{R}^ - }}} = \varphi \in E} \hfill & {} \hfill \\ \end{array} } \right.$

under local conditions which give wide latitude to those subsets of the state space $ X$ and initial data space $ E$, respectively, where (a) the (generally multivalued) operator $ B \subseteq X \times X$ is defined and accretive, and (b) the historyresponsive function $ F:D(F) \subseteq E \to X$ is defined and Lipschitz continuous. The associated semigroup is then used to investigate existence and uniqueness of solutions to (FDE). By allowing the domain of the solution semigroup to be restricted according to specific local properties of $ B$ and $ F$, moreover, our methods automatically lead to assertions on flow invariance. We illustrate our results through applications to the Goodwin oscillator and a single species population model.

References [Enhancements On Off] (What's this?)

  • [1] F. V. Atkinson and J. R. Haddock, On determining phase spaces for functional differential equations, Funkcial. Ekvac. 31 (1988), 331-347. MR 987790 (90f:45009)
  • [2] V. Barbu, Nonlinear semigroups and differential equations in Banach spaces, Noordhoff, Leyden, 1976. MR 0390843 (52:11666)
  • [3] M. Bardi, A nonautonomous nonlinear functional differential equation arising in the theory of population dynamics, J. Math. Anal. Appl. 109 (1985), 492-508. MR 802909 (86m:92023)
  • [4] D. W. Brewer, A nonlinear semigroup for a functional differential equation, Trans. Amer. Math. Soc. 236 (1978), 173-191. MR 0466838 (57:6712)
  • [5] -, A nonlinear contraction semigroup for a functional differential equation, Volterra Equations, (S.-O. Londen and O. J. Staffans, eds.), Lecture Notes in Math., vol. 737, Springer, 1979, pp. 35-44. MR 551026 (81h:47057)
  • [6] -, The asymptotic stability of a nonlinear functional differential equation of infinite delay, Houston J. Math. 6 (1980), 321-330. MR 597773 (81k:34081)
  • [7] -, Locally Lipschitz continuous functional differential equations and nonlinear semigroups, Illinois J. Math. 26 (1982), 374-381. MR 658448 (83i:34091)
  • [8] M. G. Crandall, A generalized domain for semigroup generators, Proc. Amer. Math. Soc. 37 (1973), 434-440. MR 0313873 (47:2426)
  • [9] M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265-298. MR 0287357 (44:4563)
  • [10] M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Israel J. Math. 11 (1972), 57-94. MR 0300166 (45:9214)
  • [11] J. Dyson and R. Villella-Bressan, Functional differential equations and non-linear evolution operators, Proc. Roy. Soc. Edinburgh 75A (1975/76), 223-234. MR 0442402 (56:784)
  • [12] -, Semigroups of translations associated with functional and functional differential equations, Proc. Roy. Soc. Edinburgh 82A (1979), 171-188. MR 532900 (80i:34113)
  • [13] H. Flaschka and M. J. Leitman, On semigroups of nonlinear operators and the solution of the functional differential equation $ \dot x(t) = F({x_t})$, J. Math. Anal. Appl. 49 (1975), 649-658. MR 0361959 (50:14401)
  • [14] J. A. Goldstein, Semigroups of linear operators and applications, Oxford Math. Monographs, Oxford Univ. Press, New York, 1985. MR 790497 (87c:47056)
  • [15] J. R. Haddock and W. E. Hornor, Precompactness and convergence in norm of positive orbits in a certain fading memory space, Funkcial. Ekvac. 31 (1988), 349-361. MR 987791 (90a:34160)
  • [16] J. K. Hale and J. Kato, Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11-41. MR 0492721 (58:11793)
  • [17] F. Kappel and W. Schappacher, Some considerations to the fundamental theory of infinite delay equations, J. Differential Equations 37 (1980), 141-183. MR 587220 (81j:34117)
  • [18] N. MacDonald, Time lag in a model of a biochemical reaction sequence with end product inhibition, J. Theoret. Biol. 67 (1977), 549-556. MR 0490019 (58:9382)
  • [19] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Appl. Math. Sci., vol. 44, Springer, New York, 1983. MR 710486 (85g:47061)
  • [20] A. T. Plant, Nonlinear semigroups of translations in Banach space generated by functional differential equations, J. Math. Anal. Appl. 60 (1977), 67-74. MR 0447745 (56:6055)
  • [21] W. M. Ruess, The evolution operator approach to functional differential equations with delay, Proc. Amer. Math. Soc. (to appear). MR 1154248 (93m:34132)
  • [22] C. C. Travis and G. F. Webb, Existence and stability for partial functional differential equations, Trans. Amer. Math. Soc. 200 (1974), 395-418. MR 0382808 (52:3690)
  • [23] G. F. Webb, Autonomous nonlinear functional differential equations and nonlinear semigroups, J. Math. Anal. Appl. 46 (1974), 1-12. MR 0348224 (50:722)
  • [24] -, Functional differential equations and nonlinear semigroups in $ {L^p}$-spaces, J. Differential Equations 20 (1976), 71-89.
  • [25] -, Asymptotic stability for abstract nonlinear functional differential equations, Proc. Amer. Math. Soc. 54 (1976), 225-230. MR 0402237 (53:6058)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 34K30, 47H20, 47N20

Retrieve articles in all journals with MSC: 34K30, 47H20, 47N20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1214785-X
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society