Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Weights for classical groups


Author: Jian Bei An
Journal: Trans. Amer. Math. Soc. 342 (1994), 1-42
MSC: Primary 20C20; Secondary 20G05
DOI: https://doi.org/10.1090/S0002-9947-1994-1136543-7
MathSciNet review: 1136543
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper proves the Alperin's weight conjecture for the finite unitary groups when the characteristic r of modular representation is odd. Moreover, this paper proves the conjecture for finite odd dimensional special orthogonal groups and gives a combinatorial way to count the number of weights, block by block, for finite symplectic and even dimensional special orthogonal groups when r and the defining characteristic of the groups are odd.


References [Enhancements On Off] (What's this?)

  • [1] J. L. Alperin, Large abelian subgroups of p-groups, Trans. Amer. Math. Soc. 117 (1965), 10-20. MR 0170946 (30:1180)
  • [2] -, Weights for finite groups, Arcata Conf. on Representations of Finite Groups, Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 369-379. MR 933373 (89h:20015)
  • [3] J. L. Alperin and P. Fong, Weights for symmetric and general linear groups, J. Algebra 131 (1990), 2-22. MR 1054996 (91h:20014)
  • [4] Jianbei An, 2-weights for general linear groups, J. Algebra 149 (1992), 500-527. MR 1172443 (93j:20025)
  • [5] -, 2-weights for unitary groups, Trans. Amer. Math. Soc. 339 (1993), 251-278. MR 1108609 (93k:20018)
  • [6] R. Brauer, On blocks and sections. I, II, Amer. J. Math. 89 (1967), 1115-1136; 90 (1968), 895-925.
  • [7] M. Broué, Les l-blocs des groupes $ {\text{GL}}(n,q)$ et $ {\text{U}}(n,{q^2})$ et leurs structures locales, Sém. Bourbaki Astérisque 640 (1986), 159-188. MR 837219 (87e:20021)
  • [8] M. Broué and J. Michel, Blocs et séries de Lusztig dans un groupe réductif fini, J. Reine Angew. Math. 395 (1989), 56-67. MR 983059 (90b:20037)
  • [9] F. Digne and J. Michel, Foncteurs de Lusztig et charactéres des groups linéaires et unitaires sur corps fini, J. Algebra 107 (1987), 217-255. MR 883883 (88f:20059)
  • [10] W. Feit, The representation theory of finite groups, North-Holland, Amsterdam, 1982. MR 661045 (83g:20001)
  • [11] P. Fong and B. Srinivasan, The blocks of finite general linear and unitary groups, Invent. Math. 69 (1982), 109-153. MR 671655 (83k:20013)
  • [12] -, The blocks of finite classical groups, J. Reine Angew. Math. 396 (1989), 122-191. MR 988550 (90f:20065)
  • [13] M. Geck and G. Hiss, Basic sets of Brauer characters of finite groups of Lie type, J. Reine Angew. Math. 418 (1991), 173-188. MR 1111205 (92e:20006)
  • [14] D. Gorenstein, Finite groups, Harper and Row, New York, 1968. MR 0231903 (38:229)
  • [15] R. L. Griess, Automorphisms of extra special groups and nonvanishing degree 2 cohomology, Pacific J. Math. 48 (1973), 402-422. MR 0476878 (57:16429)
  • [16] I. M. Isaacs, Characters of solvable and symplectic groups, Amer. J. Math. 95 (1973), 594-635. MR 0332945 (48:11270)
  • [17] A. Kerber, Permutations of permutation groups. I, Lecture Notes in Math., vol. 240, Springer-Verlag, Berlin, Heidelberg, and New York, 1971. MR 0325752 (48:4098)
  • [18] G. Lusztig, Irreducible representations of finite classical groups, Invent. Math. 43 (1977), 125-175. MR 0463275 (57:3228)
  • [19] J. Olsson, Remarks on symbols, hooks, and degrees of unipotent characters, J. Combin. Theory Ser. A 42 (1986), 223-238. MR 847553 (88g:20022)
  • [20] D. L. Winter, The automorphism group of an extraspecial p-group, Rocky Mountain J. Math. 2 (1972), 159-168. MR 0297859 (45:6911)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 20C20, 20G05

Retrieve articles in all journals with MSC: 20C20, 20G05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1136543-7
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society