Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Second order differentiability of convex functions in Banach spaces


Authors: Jonathan M. Borwein and Dominikus Noll
Journal: Trans. Amer. Math. Soc. 342 (1994), 43-81
MSC: Primary 46G05; Secondary 26E15
DOI: https://doi.org/10.1090/S0002-9947-1994-1145959-4
MathSciNet review: 1145959
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We present a second order differentiability theory for convex functions on Banach spaces.


References [Enhancements On Off] (What's this?)

  • [1] R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, tensor analysis, and applications, Addison-Wesley, Reading, MA, 1983. MR 697563 (84h:58001)
  • [2] A. D. Alexandrov, Almost everywhere existence of the second differential of a convex function and some properties of convex surfaces connected with it, Leningrad State Univ. Ann. [Uchenye Zapiski] Math. Ser. 6 (1939), 3-35. (Russian) MR 0003051 (2:155a)
  • [3] N. Aronszajn, Differentiability of Lipschitzian mappings between Banach spaces, Studia Math. 57 (1976), 147-190. MR 0425608 (54:13562)
  • [4] H. Attouch, Familles d'opérateurs maximaux monotones et mesurabilité, Ann. Mat. Pura Appl. (4) 120 (1979), 35-111. MR 551062 (81h:47046)
  • [5] H. Attouch and R. J. B. Wets, Isometries for the Legendre-Fenchel transform, Trans. Amer. Math. Soc. 296 (1986), 33-60. MR 837797 (87k:49023)
  • [6] V. Bangert, Analytische Eigenschaften konvexer Funktionen auf Riemannschen Mannigfaltigkeiten, J. Reine Angew. Math. 307 (1979), 309-324. MR 534228 (81e:53025)
  • [7] A. Ben-Tal and J. Zowe, Directional derivatives in nonsmooth optimization, J. Optim. Theory Appl. 47 (1985), 483-490. MR 818873 (87b:49037)
  • [8] J. M. Borwein, S. Fitzpatrick, and P. Kenderov, Minimal convex uscos and monotone operators on small sets, Canad. J. Math. 43 (1991), 461-476. MR 1118004 (92j:46078)
  • [9] J. M. Borwein and D. Preiss, A smooth variational principal with applications to subdifferentiability and to differentiability of convex functions, Trans. Amer. Math. Soc. 303 (1987), 517-527. MR 902782 (88k:49013)
  • [10] K. Buchner, Sard's theorem on Banach manifolds. Topics in differential geometry. I, II, Colloq. Math. Soc. János Bolyai, vol. 46, North-Holland, Amsterdam, 1989.
  • [11] H. Busemann, Convex surfaces, Interscience, New York, 1955.
  • [12] H. Busemann and W. Feller, Krümmungseigenschaften konvexer Flächen, Acta Math. 66 (1936), 1-47. MR 1555408
  • [13] J. P. R. Christensen, Measure theoretic zero-sets in infinite dimensional spaces and applications to differentiability of Lipschitz mappings, II, Colloq. Analyse Fonctionnel (Bordaux, 1973), pp. 29-39. MR 0361770 (50:14215)
  • [14] V. F. Demyanov, C. Lemaréchal, and J. Zowe, Approximation to a set-valued mapping, I: A proposal, Appl. Math. Optim. 14 (1986), 203-214. MR 867718 (88f:46088)
  • [15] J. Diestel and J. J. Uhl, The theory of vector measures, Math. Surveys Monographs, vol. 15, Amer. Math. Soc., Providence, RI, 1977. MR 0453964 (56:12216)
  • [16] M. Fabian, Lipschitz smooth points of convex functions and isomorphic characterizations of Hilbert spaces, Proc. London Math. Soc. (3) 51 (1985), 113-126. MR 788852 (86j:46017)
  • [17] H. Federer, Geometric measure theory, Springer-Verlag, Berlin and New York, 1969. MR 0257325 (41:1976)
  • [18] S. Fitzpatrick and R. R. Phelps, Differentiability of the metric projection in Hilbert space, Trans. Amer. Math. Soc. 270 (1982), 483-501. MR 645326 (83g:41037)
  • [19] -, Bounded approximants to monotone operators in Banach spaces (to appear).
  • [20] J. B. Hiriart-Urruty, Lipschitz r-continuity of the approximate subdifferential of a convex function, Math. Scand. 47 (1980), 124-134. MR 600082 (82c:58007)
  • [21] -, Calculus rules on the approximate second order directional derivative of a convex function, SIAM J. Control Optim. 22 (1984), 381-404. MR 739833 (85i:49023)
  • [22] J. B. Hiriart-Urruty and A. Seeger, Calculus rules on a new set-valued second order derivative for convex functions, Nonlinear Anal. 13 (1989), 721-738. MR 998516 (90e:26024)
  • [23] -, The second order subdifferential and the Dupin indicatrices of a non-differentiable convex function, Proc. London Math. Soc. 58 (1989), 351-365. MR 977481 (90c:26041)
  • [24] -, Complément de Schur et sous-différentiel du second ordre d'une fonction convexe (to appear).
  • [25] N. Kato, On the second derivatives of convex functions in Hilbert space, Proc. Amer. Math. Soc. 106 (1989). MR 960646 (90b:47097)
  • [26] F. Mignot, Contrôle dans les inéquations variationelles elliptiques, J. Funct. Anal. 22 (1976), 130-185. MR 0423155 (54:11136)
  • [27] J. J. Moreau, Proximité et dualité dans un espace Hilbertien, Bull. Soc. Math. France 93 (1965), 273-299. MR 0201952 (34:1829)
  • [28] U. Mosco, Convergence of convex sets and solutions to variational inequalities, Adv. Math. 3 (1969), 510-585. MR 0298508 (45:7560)
  • [29] A. S. Nemirovskii and S. M. Semenov, On polynomial approximation of functions on Hilbert space, Mat. Sb. 92(134) (1973), 255-277. MR 0632033 (58:30211b)
  • [29a] D. Noll, Second order differentiability of integral functionals on Sobolev spaces and $ {L^2}$-spaces, J. Reine Angew. Math. 436 (1993), 1-17. MR 1207277 (94g:49035)
  • [30] D. Noll, Generic Gâteaux-differentiability of convex functions on small sets, J. Math. Anal. Appl. 147 (1990), 531-544. MR 1050225 (91i:46047)
  • [31] -, Generic Fréchet-differentiability of convex functions on small sets, Arch. Math. 54 (1990), 487-492. MR 1049204 (91i:46046)
  • [32] -, Generalized second fundamental form for Lipschitzian hypersurfaces by way of second epi derivatives, Canad. Math. Bull. 35 (1992), 523-536. MR 1191513 (93i:49023)
  • [33] R. R. Phelps, Gaussian null sets and differentiability of Lipschitz maps on Banach spaces, Pacific J. Math. 77 (1978), 523-531. MR 510938 (80m:46040)
  • [34] -, Convex functions, monotone operators and differentiability, Lecture Notes in Math., vol. 1364, Springer-Verlag, Berlin and New York, 1989. MR 984602 (90g:46063)
  • [35] D. Preiss, Differentiability of Lipschitz functions in Banach spaces, J. Funct. Anal. 91 (1990). MR 1058975 (91g:46051)
  • [36] R. T. Rockafellar, Maximal monotone relations and the second derivatives of nonsmooth functions, Ann. Inst. H. Poincaré. Anal. Non Linéaire 2 (1985), 167-184. MR 797269 (87c:49021)
  • [37] -, Generalized second derivatives of convex functions and saddle functions, Trans. Amer. Math. Soc. 322 (1990), 51-77. MR 1031242 (91b:90190)
  • [38] -, Conjugate duality and optimization, SIAM, Philadelphia, Pa., 1974.
  • [39] -, Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives, Math. Oper. Res. 14 (462-484). MR 1008425 (91b:49022)
  • [40] G. Salinetti and R. J.-B. Wets, On the relation between two types of convergence for convex sets, J. Math. Anal. Appl. 60 (1977), 211-226. MR 0479398 (57:18828)
  • [41] J. Stoer and A. Witzgall, Convexity and optimization in finite dimensions. I, Springer-Verlag, Berlin and New York, 1970. MR 0286498 (44:3707)
  • [42] J. Vanderwerff, Smooth approximation in Banach spaces (to appear).
  • [43] R. A. Wijsman, Convergence of sequences of convex sets, cones and functions. II, Trans. Amer. Math. Soc. 123 (1966), 32-45. MR 0196599 (33:4786)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46G05, 26E15

Retrieve articles in all journals with MSC: 46G05, 26E15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1145959-4
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society