Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Smooth extensions for finite CW complexes


Author: Guihua Gong
Journal: Trans. Amer. Math. Soc. 342 (1994), 343-358
MSC: Primary 46L87; Secondary 19K33, 46M20
DOI: https://doi.org/10.1090/S0002-9947-1994-1150013-1
MathSciNet review: 1150013
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper, we have completely classified the $ {C_n}$-smooth elements of $ \operatorname{Ext} (X)$ modulo torsion for X being an arbitrary finite CW complex.


References [Enhancements On Off] (What's this?)

  • [1] M. Atiyah, Global theory of elliptic operators, Proc. Internat. Conf. on Functional Analysis and Related Topics, Univ. of Tokyo Press, Tokyo, 1970. MR 0266247 (42:1154)
  • [2] P. Baum and R. Douglas, Toeplitz operators and Poincare duality, Toeplitz Memorial Conference, Tel Aviv, 1981. MR 669904 (84m:58139)
  • [3] -, Relative K-homology and $ {C^\ast}$-algebra, manuscript.
  • [4] B. Blackadar, K-theory for operator algebras, Math. Sci. Res. Inst. Publ. No. 5, Springer-Verlag, New York, 1986. MR 859867 (88g:46082)
  • [5] R. Bott and L. Tu, Differential forms in algebraic topology, Graduate Texts in Math. 82, Springer-Verlag, New York, 1982. MR 658304 (83i:57016)
  • [6] L. Brown, R. Douglas, and P. Fillmore, Extensions of $ {C^\ast}$-algebra and K-homology, Ann. of Math. (2) 165 (1977), 265-324. MR 0458196 (56:16399)
  • [7] C. Chen, A note on the classification of mapping of a $ (2n - 2)$ dimensional complex into an n-sphere, Ann. of Math. 51 (1950), 238-240. MR 0033005 (11:380b)
  • [8] A. Connes, Non commutative differential geometry, Chapitres 1, 2, Publ. Math. Inst. Hautes Études Sci. 62 (1986), 257-360.
  • [9] -, Cyclic cohomology and the tranverse fundamental class of a foliation, Preprint, IHES M18417, 1984.
  • [10] R. Douglas, $ {C^\ast}$-algebra extensions and K-homology, Ann. of Math. Stud. no. 95, Princeton Univ. Press, Princeton, N.J., 1980. MR 571362 (82c:46082)
  • [11] -, On the smoothness of elements of Ext. topics in modern operator theory, Birkhäuser-Verlag, 1981, pp. 63-69. MR 672816 (84f:46093)
  • [12] R. Douglas and D. Voiculescu, On the smoothness of sphere extensions, J. Operator Theory 6 (1981), 103-111. MR 637004 (83h:46080)
  • [13] G. Gong, Smooth extensions for a finite CW complex, Bull. Amer. Math. Soc. 22 (1990), 73-77. MR 1003863 (90i:46125)
  • [14] -, The relation between Ext group and index of Fredholm n-tuples, preprint.
  • [15] B. Gray, Homotopy theory: an introduction to algebraic topology, Academic Press, New York, 1975. MR 0402714 (53:6528)
  • [16] P. Griffiths and J. Morgan, Rational homotopy theory and differential forms, Birkhäuser, Boston, Mass., 1981. MR 641551 (82m:55014)
  • [17] J. Helton and R. Howe, Integral operators: commutators, traces index and homology, Proc. Conf. on Operator Theory, Lecture Notes in Math., vol. 345, Springer-Verlag, Berlin and New York, 1973, pp. 141-209. MR 0390829 (52:11652)
  • [18] -, Trace of commutators of integral operators, Acta Math. 135 (1975), 271-305. MR 0438188 (55:11106)
  • [19] S. T. Hu, Extension and classification of the mapping of a finite complex into a topological group or an n-sphere, Ann. of Math. 50 (1949), 158-173. MR 0028029 (10:393b)
  • [20] G. Kasparov, The operator K-functor and extensions of $ {C^\ast}$-algebras, Izv. Akad. Nauk SSSR Ser. Math. 44 (1980), 571-636; English transl. in Math. USSR Izv.,16 (, 1981), 513-572. MR 582160 (81m:58075)
  • [21] R. Stong, Note on corbordism theory, Math. Notes, Princeton Univ. Press, Princeton, N.J., 1968.
  • [22] G. Whitehead, Elements of homotopy theory, Springer-Verlag, 1978. MR 516508 (80b:55001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 46L87, 19K33, 46M20

Retrieve articles in all journals with MSC: 46L87, 19K33, 46M20


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1150013-1
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society