Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Wavelets of multiplicity $ r$


Authors: T. N. T. Goodman and S. L. Lee
Journal: Trans. Amer. Math. Soc. 342 (1994), 307-324
MSC: Primary 41A15; Secondary 41A30, 42C05, 42C15
DOI: https://doi.org/10.1090/S0002-9947-1994-1232187-7
MathSciNet review: 1232187
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A multiresolution approximation $ {({V_m})_{m \in {\mathbf{Z}}}}$ of $ {L^2}({\mathbf{R}})$ is of multiplicity $ r > 0$ if there are r functions $ {\phi _1}, \ldots ,{\phi _r}$ whose translates form a Riesz basis for $ {V_0}$. In the general theory we derive necessary and sufficient conditions for the translates of $ {\phi _1}, \ldots ,{\phi _r},\;{\psi _1}, \ldots ,{\psi _r}$ to form a Riesz basis for $ {V_1}$. The resulting reconstruction and decomposition sequences lead to the construction of dual bases for $ {V_0}$ and its orthogonal complement $ {W_0}$ in $ {V_1}$. The general theory is applied in the construction of spline wavelets with multiple knots. Algorithms for the construction of these wavelets for some special cases are given.


References [Enhancements On Off] (What's this?)

  • [1] C. deBoor, Splines as linear combination of B-splines, Approximation Theory II (G. Lorentz, C. Chui and L. Schumaker, eds.), Academic Press, New York, 1976, pp. 1-47.
  • [2] -, Total positivity of the spline collocation matrix, Indiana Univ. J. Math. 25 (1976), 541-551. MR 0415138 (54:3229)
  • [3] Charles K. Chui and Jian-zhong Wang, A cardinal spline approach to wavelets, CAT Report #211, Texas A&M Univ., College Station, 1990. MR 1077784 (92b:41019)
  • [4] -, A general framework of compactly supported splines and wavelets, CAT Report #219, Texas A&M Univ., College Station, 1990.
  • [5] L. Daubechies, Orthonormal bases of compactly supported wavelet, Comm. Pure Appl. Math. 41 (1988), 909-996. MR 951745 (90m:42039)
  • [6] T. N. T. Goodman, S. L. Lee, and W. S. Tang, Wavelets in wandering subspaces, Trans. Amer. Math. Soc. (to appear). MR 1117215 (93j:42017)
  • [7] P. R. Halmos, A Hilbert space problem book, 2nd ed., Springer-Verlag, 1982. MR 675952 (84e:47001)
  • [8] P. G. Lemaire, Ondelettes a localisation exponentielles, J. Math. Pures Appl. 67 (1988), 227-236. MR 964171 (89m:42024)
  • [9] S. Mallat, Multiresolution approximations and wavelet orthonormal bases of $ {L^2}({\mathbf{R}})$, Trans. Amer. Math. Soc. 315 (1989), 69-87. MR 1008470 (90e:42046)
  • [10] J. B. Robertson, On wandering subspaces for unitary operators, Proc. Amer. Math. Soc. 16 (1965), 233-236. MR 0174977 (30:5165)
  • [11] I. J. Schoenberg, Cardinal spline interpolation, CBMS-NSF Series in Appl. Math., no. 12, SIAM Publ., Philadelphia, PA, 1973. MR 0420078 (54:8095)
  • [12] I. J. Schoenberg and A. Whitney, On Pólya frequency function. III. The positivity of translation determinants with application to interpolation problems by spline curves, Trans. Amer. Math. Soc. 74 (1953), 246-259. MR 0053177 (14:732g)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 41A15, 41A30, 42C05, 42C15

Retrieve articles in all journals with MSC: 41A15, 41A30, 42C05, 42C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1232187-7
Keywords: Wavelets, multiplicity, decomposition and reconstruction algorithms, duality principle, Riesz basis, cardinal splines with multiple knots
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society