Gromov's compactness theorem for pseudo holomorphic curves

Author:
Rugang Ye

Journal:
Trans. Amer. Math. Soc. **342** (1994), 671-694

MSC:
Primary 58E12; Secondary 53C23

DOI:
https://doi.org/10.1090/S0002-9947-1994-1176088-1

MathSciNet review:
1176088

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give a complete proof for Gromov's compactness theorem for pseudo holomorphic curves both in the case of closed curves and curves with boundary.

**[El]**Y. Eliashberg,*Filling by holomorphic discs and its applications*, preprint, Stanford, 1990. MR**1171908 (93g:53060)****[Fe]**H. Federer,*Geometric measure theory*, Springer, New York, 1969. MR**0257325 (41:1976)****[Ga]**L. Z. Gao,*Convergence of Riemannian manifolds, Ricci pinching and*-*curvature pinching*, preprint.**[Gi]**M. Giaquinta,*Multiple integrals in the calculus of variations and nonlinear elliptic systems*, Princeton Univ. Press, Princeton, NJ, 1983. MR**717034 (86b:49003)****[Gro]**M. Gromov,*Pseudo holomorphic curves in symplectic manifolds*, Invent. Math.**82**(1985), 307-347.**[Grü]**M. Grüter,*Regularity of weak H-surfaces*, J. Reine Angew. Math.**329**(1981), 1-15. MR**636440 (83b:53003)****[Grü-Hi-Ni]**M. Grüter, S. Hildebrandt and J. C. C. Nitsche,*On the boundary behaviour of minimal surfaces with a free boundary which are not minima of the area*, Manuscripta Math.**35**(1981), 387-410. MR**636464 (83b:58027)****[Ha-Wi]**P. Hartman and A. Wintner,*On the local behavior of solutions of nonparabolic partial differential equations*, Amer. J. Math.**75**(1953), 449-476. MR**0058082 (15:318b)****[Hi]**S. Hildebrandt,*Nonlinear elliptic systems and harmonic mappings*, Proc. Beijing Symp. Diff. Geom. & Diff. Eq. 1980, Science Press, Beijing, 1982. MR**714341 (85k:35078)****[Ho-Spru]**D. Hoffman and J. Spruck,*Sobolev and isoperimetric inequalities for submanifolds in Riemannian manifolds*, Comm. Pure Appl. Math., 1970.**[Jo1]**J. Jost,*Two-dimensional geometric variational problems*, Wiley-Interscience, New York, 1991. MR**1100926 (92h:58045)****[Jo2]**-,*On the regularity of minimal surfaces with free boundaries in Riemannian manifolds*, Manuscripta Math.**56**(1986), 279-291. MR**856366 (87j:53089)****[Jo3]**-,*Continuity of minimal surfaces with piecewise smooth free boundaries*, Math. Ann.**276**(1987), 599-614. MR**879539 (88f:53007)****[Mc]**D. McDuff,*Elliptic methods in symplectic geometry*, Bull. Amer. Math. Soc.**23**(1990). MR**1039425 (91i:58046)****[Oh]**Y.-G. Oh,*Removal of boundary singularities of pseudo-holomorphic curves with Lagrangian boundary conditions*, preprint NYU, 1990. MR**1135926 (92k:58065)****[Pan]**P. Pansu,*Pseudo-holomorphic curves in symplectic manifolds*, preprint, Ecole Polytechnique, Palaiseau, 1986.**[Par-Wo]**T. H. Parker and J. G. Wolfson,*A compactness theorem for Gromov's moduli space*, preprint, 1991.**[Sa-U]**J. Sacks and K. Uhlenbeck,*The existence of minimal immersions of*2-*spheres*, Ann. of Math. (2)**113**(1981), 1-24. MR**604040 (82f:58035)****[Sc]**R. Schoen,*Analytic aspects of the harmonic map problem*, Lectures on Partial Differential Equations (S. S. Chern, ed.), Math. Sci. Res. Inst. Publ. Ser., Springer, Berlin, 1984. MR**765241 (86b:58032)****[Wo]**J. G. Wolfson,*Gromov's compactness of pseudo-holomorphic curves and symplectic geometry*, J. Differential Geom.**28**(1988), 383-405. MR**965221 (89m:53058)****[Ye1]**R. Ye,*Regularity of a minimal surface at its free boundary*, Math. Z.**198**(1988), 261-275. MR**939540 (89g:49058)****[Ye2]**-,*On minimal surfaces of higher topology*, preprint, Stanford, 1988.**[Ye3]**-,*An isoperimetric inequality for Riemannian submanifolds with free boundary*, in preparation.**[Ye4]**-,*Existence, regularity and finiteness of minimal surfaces with free boundary*, preprint no. 1, SFB256, Bonn, 1987.

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
58E12,
53C23

Retrieve articles in all journals with MSC: 58E12, 53C23

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1994-1176088-1

Article copyright:
© Copyright 1994
American Mathematical Society