Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Transfer functions of regular linear systems. I. Characterizations of regularity

Author: George Weiss
Journal: Trans. Amer. Math. Soc. 342 (1994), 827-854
MSC: Primary 93C25; Secondary 47N70, 93B28
MathSciNet review: 1179402
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We recall the main facts about the representation of regular linear systems, essentially that they can be described by equations of the form $ \dot x(t) = Ax(t) + Bu(t)$, $ y(t) = Cx(t) + Du(t)$, like finite dimensional systems, but now A, B and C are in general unbounded operators. Regular linear systems are a subclass of abstract linear systems. We define transfer functions of abstract linear systems via a generalization of a theorem of Fourés and Segal. We prove a formula for the transfer function of a regular linear system, which is similar to the formula in finite dimensions. The main result is a (simple to state but hard to prove) necessary and sufficient condition for an abstract linear system to be regular, in terms of its transfer function. Other conditions equivalent to regularity are also obtained. The main result is a consequence of a new Tauberian theorem, which is of independent interest.

References [Enhancements On Off] (What's this?)

  • [1] W. Arendt and J. Prüss, Vector-valued Tauberian theorems and asymptotic behavior of linear Volterra equations, SIAM J. Math. Anal. 23 (1992), 412-448. MR 1147871 (92m:47150)
  • [2] C. J. K. Batty, Tauberian theorems for the Laplace-Stieltjes transform, Trans. Amer. Math. Soc. 322 (1990), 783-804. MR 1013326 (91c:44001)
  • [3] R. F. Curtain, Equivalence of input-output stability and exponential stability, Part II, Systems and Control Letters 12 (1989), 235-239. MR 993947 (90a:93089)
  • [4] -, Representations of infinite-dimensional linear systems, Three Decades of Mathematical Systems Theory (H. Nijmeijer and J. M. Schumacher, eds.), Springer-Verlag, Berlin, 1989, pp. 101-128.
  • [5] R. F. Curtain, H. Logemann, S. Townley, and H. Zwart, Well-posedness, stabilizability and admissibility for Pritchard-Salamon systems, Institut für Dynamische Systeme, Universität Bremen, Report #260, 1992.
  • [6] R. F. Curtain and G. Weiss, Well posedness of triples of operators (in the sense of linear systems theory), Control and Estimation of Distributed Parameter Systems (F. Kappel, K. Kunisch, and W. Schappacher, eds.), Birkhäuser, Basel, 1989, pp. 41-59. MR 1033051 (91d:93027)
  • [7] J. Diestel and J. J. Uhl, Vector measures, Math. Surveys, vol. 15, Amer. Math. Soc., Providence, RI, 1977. MR 0453964 (56:12216)
  • [8] G. Doetsch, Handbuch der Laplace-Transformation, Bd. I, Birkhäuser Verlag, Basel, 1950. MR 0344808 (49:9547)
  • [9] Y. Fourés and I. E. Segal, Causality and analyticity, Trans. Amer. Math. Soc. 78 (1955), 385-405. MR 0069401 (16:1032d)
  • [10] P. A. Fuhrmann, Linear systems and operators in Hilbert space, McGraw-Hill, New York, 1981. MR 629828 (83d:47001)
  • [11] G. Greiner, J. Voigt, and M. Wolff, On the spectral bound of the generator of semigroups of positive operators, J. Operator Theory 5 (1981), 245-256. MR 617977 (82h:47039)
  • [12] J. W. Helton, Systems with infinite-dimensional state space: the Hilbert space approach, Proc. IEEE 64 (1976), 145-160. MR 0416694 (54:4764)
  • [13] R. Rebarber, Conditions for the equivalence of internal and external stability for distributed parameter systems, IEEE Trans. Automat. Control 38 (1993), 994-998. MR 1227215 (94b:93100)
  • [14] D. Salamon, Infinite dimensional systems with unbounded control and observation: a functional analytic approach, Trans. Amer. Math. Soc. 300 (1987), 383-431. MR 876460 (88d:93024)
  • [15] -, Realization theory in Hilbert space, Math. Systems Theory 21 (1989), 147-164. MR 977021 (89k:93038)
  • [16] G. Weiss, Admissibility of unbounded control operators, SIAM J. Control Optim. 27 (1989), 527-545. MR 993285 (90c:93060)
  • [17] -, Admissible observation operators for linear semigroups, Israel J. Math. 65 (1989), 17-43. MR 994732 (90g:47082)
  • [18] -, The representation of regular linear systems on Hilbert spaces, Control and Estimation of Distributed Parameter Systems (F. Kappel, K. Kunisch, and W. Schappacher, eds.), Birkhäuser, Basel, 1989, pp. 401-416. MR 1033074 (91d:93026)
  • [19] -, Representation of shift invariant operators on $ {L^2}$ by $ {H^\infty }$ transfer functions: an elementary proof, a generalization to $ {L^p}$ and a counterexample for $ {L^\infty }$, Math. Control Signals Systems 4 (1991), 193-203. MR 1092636 (91m:93041)
  • [20] H. Zwart, Private communication, 1988.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 93C25, 47N70, 93B28

Retrieve articles in all journals with MSC: 93C25, 47N70, 93B28

Additional Information

Keywords: Regular linear system, Lebesgue extension, shift-invariant operator, transfer function, feedthrough operator, Tauberian theorem
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society