Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 

 

Classification of rank-2 ample and spanned vector bundles on surfaces whose zero loci consist of general points


Author: Atsushi Noma
Journal: Trans. Amer. Math. Soc. 342 (1994), 867-894
MSC: Primary 14J60; Secondary 14C20, 14J25
MathSciNet review: 1181186
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let X be an n-dimensional smooth projective variety over an algebraically closed field k of characteristic zero, and E an ample and spanned vector bundle of rank n on X. To study the geometry of (X, E) in view of the zero loci of global sections of E, Ballico introduces a numerical invariant $ s(E)$. The purposes of this paper are to give a cohomological interpretation of $ s(E)$, and to classify ample and spanned rank-2 bundles E on smooth complex surfaces X with $ s(E) = 2{c_2}(E)$, or $ 2{c_2}(E) - 1$; namely ample and spanned 2-bundles whose zero loci of global sections consist of general $ {c_2}(E)$ points or general $ {c_2}(E) - 1$ points plus one. As an application of these classification, we classify rank-2 ample and spanned vector bundles E on smooth complex projective surfaces with $ {c_2}(E) = 2$.


References [Enhancements On Off] (What's this?)

  • [1] E. Arbarello, M. Cornalba, P. A. Griffiths, and J. Harris, Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 267, Springer-Verlag, New York, 1985. MR 770932
  • [2] M. Artin, On deformation of singularities, Tata Inst. Fund. Res. Lectures on Math. and Phys., vol. 54, Tata Inst. Fund. Res., Bombay, 1976.
  • [3] Edoardo Ballico, Rank-2 vector bundles with many sections and low 𝑐₂ on a surface, Geom. Dedicata 29 (1989), no. 1, 109–124. MR 989190, 10.1007/BF00147473
  • [4] Edoardo Ballico, Rank-2 vector bundles on a surface with many spread sections, Indiana Univ. Math. J. 38 (1989), no. 2, 471–487. MR 997392, 10.1512/iumj.1989.38.38022
  • [5] Edoardo Ballico, Construction of bundles on surfaces with low 𝑐₂, Indiana Univ. Math. J. 38 (1989), no. 2, 489–496. MR 997393, 10.1512/iumj.1989.38.38023
  • [6] Edoardo Ballico and Antonio Lanteri, An indecomposable rank-2 vector bundle the complete linear system of whose determinant consists of hyperelliptic curves, Boll. Un. Mat. Ital. A (7) 3 (1989), no. 2, 225–230 (English, with Italian summary). MR 1008595
  • [7] Edoardo Ballico and Antonio Lanteri, Ample and spanned rank-2 vector bundles with 𝑐₂=2 on complex surfaces, Arch. Math. (Basel) 56 (1991), no. 6, 611–615. MR 1106503, 10.1007/BF01246777
  • [8] Aldo Biancofiore, Maria Lucia Fania, and Antonio Lanteri, Polarized surfaces with hyperelliptic sections, Pacific J. Math. 143 (1990), no. 1, 9–24. MR 1047397
  • [9] Spencer Bloch and David Gieseker, The positivity of the Chern classes of an ample vector bundle, Invent. Math. 12 (1971), 112–117. MR 0297773
  • [10] Takao Fujita, Classification theories of polarized varieties, London Mathematical Society Lecture Note Series, vol. 155, Cambridge University Press, Cambridge, 1990. MR 1162108
  • [11] Takao Fujita, On adjoint bundles of ample vector bundles, Complex algebraic varieties (Bayreuth, 1990) Lecture Notes in Math., vol. 1507, Springer, Berlin, 1992, pp. 105–112. MR 1178722, 10.1007/BFb0094513
  • [12] Takao Fujita, Ample vector bundles of small 𝑐₁-sectional genera, J. Math. Kyoto Univ. 29 (1989), no. 1, 1–16. MR 988059
  • [13] William Fulton, Intersection theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 2, Springer-Verlag, Berlin, 1998. MR 1644323
  • [14] David Gieseker, 𝑝-ample bundles and their Chern classes, Nagoya Math. J. 43 (1971), 91–116. MR 0296078
  • [15] Phillip Griffiths and Joseph Harris, Residues and zero-cycles on algebraic varieties, Ann. of Math. (2) 108 (1978), no. 3, 461–505. MR 512429, 10.2307/1971184
  • [16] F. Bombal, Alexander Grothendieck’s work on functional analysis, Advanced courses of mathematical analysis. II, World Sci. Publ., Hackensack, NJ, 2007, pp. 16–36. MR 2334323, 10.1142/9789812708441_0002
  • [17] -, Techniques de construction et théorèmes d'existence en géométrie algébrique: Les schémas de Hilbert, Sém. Bourbaki, exposé 221 Secrétariat Math., Paris.
  • [19] Dan Laksov, Indecomposability of restricted tangent bundles, Young tableaux and Schur functors in algebra and geometry (Toruń, 1980), Astérisque, vol. 87, Soc. Math. France, Paris, 1981, pp. 207–219. MR 646821
  • [20] A. Lanteri, Variazioni sul tema classico delle sezioni iperellittiche, Rend. Sem. Mat. Fis. Milano 57 (1987), 533-547.
  • [21] Antonio Lanteri, A note on 𝑘-dimensional double solids, Reports of the Mathematics Seminar of Brescia, Vol. 10 (Italian), Sci. Mat., vol. 10, Vita e Pensiero, Milan, 1988, pp. 1–9 (English, with Italian summary). MR 1083186
  • [22] Antonio Lanteri and Hidetoshi Maeda, Adjoint bundles of ample and spanned vector bundles on algebraic surfaces, J. Reine Angew. Math. 433 (1992), 181–199. MR 1191605
  • [23] Robert Lazarsfeld, Some applications of the theory of positive vector bundles, Complete intersections (Acireale, 1983) Lecture Notes in Math., vol. 1092, Springer, Berlin, 1984, pp. 29–61. MR 775876, 10.1007/BFb0099356
  • [24] T. Matsubara, Ample rank-2 bundles on a surface with sections whose zero loci spread widely, preprint.
  • [25] Hideyuki Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, vol. 8, Cambridge University Press, Cambridge, 1986. Translated from the Japanese by M. Reid. MR 879273
  • [26] David Mumford, Lectures on curves on an algebraic surface, With a section by G. M. Bergman. Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. MR 0209285
  • [27] Masayoshi Nagata, On self-intersection number of a section on a ruled surface, Nagoya Math. J. 37 (1970), 191–196. MR 0258829
  • [28] Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 14J60, 14C20, 14J25

Retrieve articles in all journals with MSC: 14J60, 14C20, 14J25


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9947-1994-1181186-2
Keywords: Ample vector bundle, spanned vector bundle, zero cycle, adjunction map
Article copyright: © Copyright 1994 American Mathematical Society