Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

A controlled plus construction for crumpled laminations


Authors: R. J. Daverman and F. C. Tinsley
Journal: Trans. Amer. Math. Soc. 342 (1994), 807-826
MSC: Primary 57N70; Secondary 54B15, 57M20, 57N35
DOI: https://doi.org/10.1090/S0002-9947-1994-1182981-6
MathSciNet review: 1182981
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Given a closed n-manifold M $ (n > 4)$ and a finitely generated perfect subgroup P of $ {\pi _1}(M)$, we previously developed a controlled version of Quillen's plus construction, namely a cobordism (W, M, N) with the inclusion $ j:N \mapsto W$ a homotopy equivalence and kernel of $ {i_\char93 }:{\pi _1}(M) \mapsto {\pi _1}(W)$ equalling the smallest normal subgroup of $ {\pi _1}(M)$ containing P together with a closed map $ p:W \mapsto [0,1]$ such that $ {p^{ - 1}}(t)$ is a closed n-manifold for every $ t \in [0,1]$ and, in particular, $ M = {p^{ - 1}}(0)$ and $ N = {p^{ - 1}}(1)$. We accomplished this by constructing an acyclic map of manifolds $ f:M \mapsto N$ having the right fundamental groups, and W arose as the mapping cylinder of f with a collar attached along N. The main result here presents a condition under which the desired controlled plus construction can still be accomplished in many cases even when $ {\pi _1}(M)$ contains no finitely generated perfect subgroups. By-products of these results include a new method for constructing wild embeddings of codimension one manifolds and a better understanding of perfect subgroups of finitely presented groups.


References [Enhancements On Off] (What's this?)

  • [Ad] J. F. Adams, A new proof of a theorem of W. H. Cockcroft, J. London Math. Soc. 49 (1955), 482-488. MR 0076335 (17:883d)
  • [Ar] S. Armentrout, Decompositions and absolute neighborhood retracts, Geometric Topology (L. C. Glaser and T. B. Rushing, eds.), Lecture Notes in Math., vol. 438, Springer-Verlag, Berlin and New York, 1975, pp. 1-5. MR 0394600 (52:15401)
  • [B] R. H. Bing, Upper semicontinuous decompositions of $ {E^3}$, Ann. of Math. (2) 65 (1957), 363-374. MR 0092960 (19:1187f)
  • [C1] J. W. Cannon, Shrinking cell-like decompositions of manifolds. Codimension three, Ann. of Math. (2) 110 (1979), 83-112. MR 541330 (80j:57013)
  • [C2] -, The recognition problem: what is a topological manifold?, Bull. Amer. Math. Soc. 84 (1978), 832-866. MR 0494113 (58:13043)
  • [CBL] J. W. Cannon, J. L. Bryant, and R. C. Lacher, The structure of generalized manifolds having nonmanifold set of trivial dimension, Geometric Topology (J. C. Cantrell, ed.), Academic Press, New York, 1979, pp. 261-300. MR 537735 (80h:57026)
  • [Da1] R. J. Daverman, Every crumpled n-cube is a closed 4-cell-complement, Michigan Math. J. 24 (1977), 225-241. MR 0488066 (58:7637)
  • [Da2] -, Detecting the disjoint disks property, Pacific J. Math. 93 (1981), 277-298. MR 623564 (82k:57007)
  • [Da3] -, Decompositions into codimension one submanifolds, Compositio Math. 55 (1985), 185-207. MR 795714 (87b:57016)
  • [Da4] -, Decompositions of manifolds, Academic Press, Orlando, 1986. MR 872468 (88a:57001)
  • [DT1] R. J. Daverman and F. C. Tinsley, Laminated decompositions involving a given submanifold, Topology Appl. 20 (1985), 107-119. MR 800841 (87d:57013)
  • [DT2] -, Laminations, finitely generated perfect groups, and acyclic mappings, Michigan Math. J. 33 (1986), 343-351. MR 856526 (87k:57016)
  • [DT3] -, The homotopy type of certain laminated manifolds, Proc. Amer. Math. Soc. 96 (1986), 703-708. MR 826506 (87e:57024)
  • [DW1] R. J. Daverman and J. J. Walsh, Decompositions into codimension two spheres and approximate fibrations, Topology Appl. 19 (1985), 103-121. MR 789592 (87h:57020)
  • [DW2] -, Decompositions into codimension two manifolds, Trans. Amer. Math. Soc. 288 (1985), 273-291. MR 773061 (87h:57019)
  • [DW3] -, Decompositions into submanifolds that yield generalized manifolds, Topology Appl. 26 (1987), 143-162. MR 896870 (89c:57017)
  • [Do] Albrecht Dold, Lectures on algebraic topology, Springer-Verlag, Berlin, Heidelberg, and New York, 1972. MR 0415602 (54:3685)
  • [Dr] A. N. Dranishnikov, On a problem of P. S. Aleksandrov, Math. USSR-Sb. 63 (21) (1989), 539-545; English transl. of Mat. Sb. 135 (177) (1988), 551-557. MR 942139 (90e:55004)
  • [E1] R. D. Edwards, Demension theory. I, Geometric Topology (L. C. Glaser and T. B. Rushing, eds.), Lecture Notes in Math., vol. 438, Springer-Verlag, Berlin and New York, 1975, pp. 195-211. MR 0394678 (52:15477)
  • [E2] -, The topology of manifolds and cell-like maps, Proc. Internat. Congr. Math. Helsinki, 1978 (O. Lehti, ed.), Acad. Sci. Fenn., Helsinki, 1980, pp. 111-127. MR 562601 (81g:57010)
  • [F] M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), 352-453. MR 679066 (84b:57006)
  • [H] J. Howie, Aspherical and acyclic 2-complexes, J. London Math. Soc. (2) 20 (1979), 549-558. MR 561147 (81e:57004)
  • [Li] V. T. Liem, Manifolds accepting codimension one sphere-like decompositions, Topology Appl. 21 (1985), 77-86. MR 808726 (87a:57022)
  • [LS] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin and New York, 1976. MR 1812024 (2001i:20064)
  • [Q1] D. Quillen, Cohomology of groups, Actes Congres Int. Math., Tome 2, 1970, pp. 47-51. MR 0488054 (58:7627a)
  • [Qn1] F. Quinn, Ends of maps. I, Ann. of Math. (2) 110 (1979), 275-331. MR 549490 (82k:57009)
  • [Qn2] -, Resolutions of manifolds, and the topological characterization of manifolds, Invent. Math. 72 (1983), 267-284. MR 700771 (85b:57023)
  • [Qn3] -, An obstruction to the resolution of homology manifolds, Michigan Math. J. 34 (1987), 285-291. MR 894878 (88j:57016)
  • [Si] L. C. Siebenmann, The obstruction to finding a boundary for an open manifold of dimension greater than 5, Ph.D. thesis, Princeton Univ., 1965.
  • [Sm] S. Smale, A Vietoris theorem for homotopy, Proc. Amer. Math. Soc. 8 (1957), 604-610. MR 0087106 (19:302f)
  • [T] F. C. Tinsley, Acyclic maps which are homotopic to homeomorphisms, Abstract #838-57-31, Abstracts Amer. Math. Soc. 8 (1987), p. 426.
  • [W] C. T. C. Wall (Editor), Homological group theory, Cambridge Univ. Press, London, 1979. MR 564417 (80m:20001)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 57N70, 54B15, 57M20, 57N35

Retrieve articles in all journals with MSC: 57N70, 54B15, 57M20, 57N35


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1182981-6
Keywords: Crumpled lamination, degree one map, almost acyclic, perfect normal subgroup
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society