A controlled plus construction for crumpled laminations

Authors:
R. J. Daverman and F. C. Tinsley

Journal:
Trans. Amer. Math. Soc. **342** (1994), 807-826

MSC:
Primary 57N70; Secondary 54B15, 57M20, 57N35

MathSciNet review:
1182981

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Given a closed *n*-manifold *M* and a finitely generated perfect subgroup *P* of , we previously developed a controlled version of Quillen's plus construction, namely a cobordism (*W, M, N*) with the inclusion a homotopy equivalence and kernel of equalling the smallest normal subgroup of containing *P* together with a closed map such that is a closed *n*-manifold for every and, in particular, and . We accomplished this by constructing an acyclic map of manifolds having the right fundamental groups, and *W* arose as the mapping cylinder of *f* with a collar attached along *N*. The main result here presents a condition under which the desired controlled plus construction can still be accomplished in many cases even when contains no finitely generated perfect subgroups. By-products of these results include a new method for constructing wild embeddings of codimension one manifolds and a better understanding of perfect subgroups of finitely presented groups.

**[Ad]**J. F. Adams,*A new proof of a theorem of W. H. Cockcroft*, J. London Math. Soc.**30**(1955), 482–488. MR**0076335****[Ar]**Steve Armentrout,*Decompositions and absolute neighborhood retracts*, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 1–5. Lecture Notes in Math., Vol. 438. MR**0394600****[B]**R. H. Bing,*Upper semicontinuous decompositions of 𝐸³*, Ann. of Math. (2)**65**(1957), 363–374. MR**0092960****[C1]**J. W. Cannon,*Shrinking cell-like decompositions of manifolds. Codimension three*, Ann. of Math. (2)**110**(1979), no. 1, 83–112. MR**541330**, 10.2307/1971245**[C2]**J. W. Cannon,*The recognition problem: what is a topological manifold?*, Bull. Amer. Math. Soc.**84**(1978), no. 5, 832–866. MR**0494113**, 10.1090/S0002-9904-1978-14527-3**[CBL]**J. W. Cannon, J. L. Bryant, and R. C. Lacher,*The structure of generalized manifolds having nonmanifold set of trivial dimension*, Geometric topology (Proc. Georgia Topology Conf., Athens, Ga., 1977), Academic Press, New York-London, 1979, pp. 261–300. MR**537735****[Da1]**Robert J. Daverman,*Every crumpled 𝑛-cube is a closed 𝑛-cell-complement*, Michigan Math. J.**24**(1977), no. 2, 225–241. MR**0488066****[Da2]**Robert J. Daverman,*Detecting the disjoint disks property*, Pacific J. Math.**93**(1981), no. 2, 277–298. MR**623564****[Da3]**R. J. Daverman,*Decompositions of manifolds into codimension one submanifolds*, Compositio Math.**55**(1985), no. 2, 185–207. MR**795714****[Da4]**Robert J. Daverman,*Decompositions of manifolds*, Pure and Applied Mathematics, vol. 124, Academic Press, Inc., Orlando, FL, 1986. MR**872468****[DT1]**R. J. Daverman and F. C. Tinsley,*Laminated decompositions involving a given submanifold*, Topology Appl.**20**(1985), no. 2, 107–119. MR**800841**, 10.1016/0166-8641(85)90071-9**[DT2]**R. J. Daverman and F. C. Tinsley,*Laminations, finitely generated perfect groups, and acyclic maps*, Michigan Math. J.**33**(1986), no. 3, 343–351. MR**856526**, 10.1307/mmj/1029003414**[DT3]**R. J. Daverman and F. C. Tinsley,*The homotopy type of certain laminated manifolds*, Proc. Amer. Math. Soc.**96**(1986), no. 4, 703–708. MR**826506**, 10.1090/S0002-9939-1986-0826506-1**[DW1]**R. J. Daverman and J. J. Walsh,*Decompositions into codimension two spheres and approximate fibrations*, Topology Appl.**19**(1985), no. 2, 103–121. MR**789592**, 10.1016/0166-8641(85)90064-1**[DW2]**R. J. Daverman and J. J. Walsh,*Decompositions into codimension-two manifolds*, Trans. Amer. Math. Soc.**288**(1985), no. 1, 273–291. MR**773061**, 10.1090/S0002-9947-1985-0773061-4**[DW3]**R. J. Daverman and J. J. Walsh,*Decompositions into submanifolds that yield generalized manifolds*, Topology Appl.**26**(1987), no. 2, 143–162. MR**896870**, 10.1016/0166-8641(87)90065-4**[Do]**A. Dold,*Lectures on algebraic topology*, Springer-Verlag, New York-Berlin, 1972 (German). Die Grundlehren der mathematischen Wissenschaften, Band 200. MR**0415602****[Dr]**A. N. Dranishnikov,*On a problem of P. S. Aleksandrov*, Mat. Sb. (N.S.)**135(177)**(1988), no. 4, 551–557, 560 (Russian); English transl., Math. USSR-Sb.**63**(1989), no. 2, 539–545. MR**942139****[E1]**Robert D. Edwards,*Demension theory. I*, Geometric topology (Proc. Conf., Park City, Utah, 1974) Springer, Berlin, 1975, pp. 195–211. Lecture Notes in Math., Vol. 438. MR**0394678****[E2]**Robert D. Edwards,*The topology of manifolds and cell-like maps*, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki, 1980, pp. 111–127. MR**562601****[F]**Michael Hartley Freedman,*The topology of four-dimensional manifolds*, J. Differential Geom.**17**(1982), no. 3, 357–453. MR**679066****[H]**James Howie,*Aspherical and acyclic 2-complexes*, J. London Math. Soc. (2)**20**(1979), no. 3, 549–558. MR**561147**, 10.1112/jlms/s2-20.3.549**[Li]**Vo Thanh Liem,*Manifolds accepting codimension-one sphere-shape decompositions*, Topology Appl.**21**(1985), no. 1, 77–86. MR**808726**, 10.1016/0166-8641(85)90060-4**[LS]**Roger C. Lyndon and Paul E. Schupp,*Combinatorial group theory*, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition. MR**1812024****[Q1]**Daniel Quillen,*Cohomology of groups*, Actes du Congrès International des Mathématiciens (Nice, 1970) Gauthier-Villars, Paris, 1971, pp. 47–51. MR**0488054****[Qn1]**Frank Quinn,*Ends of maps. I*, Ann. of Math. (2)**110**(1979), no. 2, 275–331. MR**549490**, 10.2307/1971262**[Qn2]**Frank Quinn,*Resolutions of homology manifolds, and the topological characterization of manifolds*, Invent. Math.**72**(1983), no. 2, 267–284. MR**700771**, 10.1007/BF01389323**[Qn3]**Frank Quinn,*An obstruction to the resolution of homology manifolds*, Michigan Math. J.**34**(1987), no. 2, 285–291. MR**894878**, 10.1307/mmj/1029003559**[Si]**L. C. Siebenmann,*The obstruction to finding a boundary for an open manifold of dimension greater than*5, Ph.D. thesis, Princeton Univ., 1965.**[Sm]**Stephen Smale,*A Vietoris mapping theorem for homotopy*, Proc. Amer. Math. Soc.**8**(1957), 604–610. MR**0087106**, 10.1090/S0002-9939-1957-0087106-9**[T]**F. C. Tinsley,*Acyclic maps which are homotopic to homeomorphisms*, Abstract #838-57-31, Abstracts Amer. Math. Soc.**8**(1987), p. 426.**[W]**C. T. C. Wall (ed.),*Homological group theory*, London Mathematical Society Lecture Note Series, vol. 36, Cambridge University Press, Cambridge-New York, 1979. MR**564417**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
57N70,
54B15,
57M20,
57N35

Retrieve articles in all journals with MSC: 57N70, 54B15, 57M20, 57N35

Additional Information

DOI:
https://doi.org/10.1090/S0002-9947-1994-1182981-6

Keywords:
Crumpled lamination,
degree one map,
almost acyclic,
perfect normal subgroup

Article copyright:
© Copyright 1994
American Mathematical Society