Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Block Jacobi matrices and zeros of multivariate orthogonal polynomials


Author: Yuan Xu
Journal: Trans. Amer. Math. Soc. 342 (1994), 855-866
MSC: Primary 42C05; Secondary 65D99, 65F99
DOI: https://doi.org/10.1090/S0002-9947-1994-1258289-7
MathSciNet review: 1258289
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A commuting family of symmetric matrices are called the block Jacobi matrices, if they are block tridiagonal. They are related to multivariate orthogonal polynomials. We study their eigenvalues and joint eigenvectors. The joint eigenvalues of the truncated block Jacobi matrices correspond to the common zeros of the multivariate orthogonal polynomials.


References [Enhancements On Off] (What's this?)

  • [1] N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space, Ungar, New York, 1961.
  • [2] T. S. Chihara, An introduction to orthogonal polynomials, Mathematics and its Applications, vol. 13, Gordon and Breach, New York, 1978. MR 0481884 (58:1979)
  • [3] J. Dombrowski, Orthogonal polynomials and functional analysis, Orthogonal Polynomials (P. Nevai, ed.), Kluwer Academic, Amsterdam, 1990, pp. 147-161. MR 1100292 (92m:42023)
  • [4] -, Tridiagonal matrix representations of cyclic selfadjoint operators. I, Pacific J. Math. 114 (1984), 325-334; II, 120 (1985), 47-53. MR 757504 (85h:47033)
  • [5] T. Koornwinder, Two-variable analogues of the classical orthogonal polynomials, Theory and Applications of Special Functions (R. A. Askey, ed.), Academic Press, 1975. MR 0402146 (53:5967)
  • [6] H. Möller, Polynomideale und Kubaturformeln, Thesis, Univ. of Dortmund, 1973.
  • [7] -, Kubaturformeln mit minimaler knotenzahl, Numer. Math. 25 (1976), 185-200. MR 0405815 (53:9607)
  • [8] C. R. Morrow and T. N. L. Patterson, Construction of algebraic cubature rules using polynomial ideal theory, SIAM J. Numer. Anal. 15 (1978), 953-976. MR 507557 (80a:65048)
  • [9] I. P. Mysovskikh, Numerical characteristics of orthogonal polynomials in two variables, Vestnik Leningrad Univ. Math. 3 (1976), 323-332.
  • [10] -, The approximation of multiple integrals by using interpolatory cubature formulae, Quantitative Approximation (R. A. DeVore and K. Scherer, eds.), Academic Press, New York, 1980, pp. 217-243. MR 588184 (82b:41031)
  • [11] F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York, 1955. MR 0071727 (17:175i)
  • [12] H. Schmid, On cubature formulae with a minimal number of knots, Numer. Math. 31 (1978), 282-297. MR 514598 (80a:65058)
  • [13] -, Interpolatorische Kubaturformeln, Dissertationes Math. 220 (1983), 1-122. MR 735919 (85i:65034)
  • [14] -, Minimal cubature formulae and matrix equation, preprint.
  • [15] M. Stone, Linear transformations in Hilbert space and their applications to analysis, Amer. Math. Soc. Colloq. Publ., vol. 15, Amer. Math. Soc., Providence, R.I., 1932; reprinted 1983. MR 1451877 (99k:47001)
  • [16] A. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, Englewood Cliffs, N.J., 1971. MR 0327006 (48:5348)
  • [17] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R.I., 4th ed., 1975.
  • [18] Y. Xu, On multivariate orthogonal polynonials, SIAM J. Math. Anal. 24 (1993), 783-794. MR 1215438 (94i:42031)
  • [19] -, Multivariate orthogonal polynomials and operator theory, Trans. Amer. Math. Soc. (to appear). MR 1169912 (94g:42040)
  • [20] -, Gaussian cubature and bivariate polynomial interpolation, Math. Comp. 59 (1992), 547-555. MR 1140649 (93a:65026)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42C05, 65D99, 65F99

Retrieve articles in all journals with MSC: 42C05, 65D99, 65F99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1258289-7
Keywords: Block Jacobi matrices, truncated block Jacobi matrices, joint eigenvectors, common zeros of multivariate orthogonal polynomials, commuting selfadjoint operators
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society