Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Multivariate orthogonal polynomials and operator theory


Author: Yuan Xu
Journal: Trans. Amer. Math. Soc. 343 (1994), 193-202
MSC: Primary 42C05; Secondary 47A57, 47B15
DOI: https://doi.org/10.1090/S0002-9947-1994-1169912-X
MathSciNet review: 1169912
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The multivariate orthogonal polynomials are related to a family of commuting selfadjoint operators. The spectral theorem for these operators is used to prove that a polynomial sequence satisfying a vector-matrix form of the three-term relation is orthonormal with a determinate measure.


References [Enhancements On Off] (What's this?)

  • [1] N. I. Akhiezer and I. M. Glazman, Theory of linear operators in Hilbert space, Ungar, New York, 1961.
  • [2] S. K. Berberian, Notes on spectral theory, Van Nostrand, Princeton, N.J., 1966. MR 0190760 (32:8170)
  • [3] C. Berg, The multidimensional moment problem and semigroups, Moments in Mathematics, Proc. Sympos. Appl. Math., Vol. 37, Amer. Math. Soc., Providence, R.I., 1987, pp. 110-124. MR 921086 (89k:44013)
  • [4] M. Bertran, Notes on orthogonal polynomials in $ \nu $-variables, SIAM J. Math. Anal. 6 (1975), 250-257. MR 0364705 (51:959)
  • [5] T. S. Chihara, An introduction to orthogonal polynomials, Math. and its Appl., Vol. 13, Gordon and Breach, New York, 1978. MR 0481884 (58:1979)
  • [6] J. Dombrowski, Orthogonal polynomials and functional analysis, Orthogonal Polynomials (P. Nevai, ed.), Kluwer Academic, Amsterdam, 1990, pp. 147-161. MR 1100292 (92m:42023)
  • [7] -, Tridiagonal matrix representations of cyclic selfadjoint operators, I, Pacific J. Math. 114 (1984), 325-334; II 120 (1985), 47-53. MR 757504 (85h:47033)
  • [8] B. Fuglede, The multidimensional moment problem, Math. Expositions 1 (1983), 47-65. MR 693807 (85g:44010)
  • [9] M. A. Kowalski, Orthogonality and recursion formulas for polynomials in n variables, SIAM J. Math. Anal. 13 (1982), 316-323. MR 647129 (83j:42022b)
  • [10] H. L. Krall and I. M. Sheffer, Orthogonal polynomials in two variables, Ann. Mat. Pura Appl. (4) 76 (1967), 325-376. MR 0228920 (37:4499)
  • [11] E. Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572-615. MR 0107176 (21:5901)
  • [12] E. Prugoveeki, Quantum mechanics in Hilbert space, 2nd ed., New York, 1981. MR 630533 (84k:81005)
  • [13] F. Riesz and B. Sz.-Nagy, Functional analysis, Ungar, New York, 1955. MR 0071727 (17:175i)
  • [14] B. D. Sleeman, Multiparameter spectral theory in Hilbert Spaces, Pitman, London, 1978. MR 510467 (80c:47021)
  • [15] M. Stone, Linear transformations in Hilbert space and their applications to analysis, Amer. Math. Soc. Colloq. Publ., Vol. 15, Amer. Math. Soc., Providence, R.I., 1932; reprinted 1983. MR 1451877 (99k:47001)
  • [16] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc., Providence, R.I., 4th ed., 1975.
  • [17] Y. Xu, On multivariate orthogonal polynomials, SIAM J. Math. Anal. 24 (1993), 783-794. MR 1215438 (94i:42031)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 42C05, 47A57, 47B15

Retrieve articles in all journals with MSC: 42C05, 47A57, 47B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1169912-X
Keywords: Multivariate orthogonal polynomials, recurrence relation, commuting selfadjoint operators, determinate measure
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society