Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

Amenability and the structure of the algebras $ A\sb p(G)$


Author: Brian Forrest
Journal: Trans. Amer. Math. Soc. 343 (1994), 233-243
MSC: Primary 43A07; Secondary 43A15, 46J99
DOI: https://doi.org/10.1090/S0002-9947-1994-1181182-5
MathSciNet review: 1181182
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A number of characterizations are given of the class of amenable locally compact groups in terms of the ideal structure of the algebras $ {A_p}(G)$. An almost connected group is amenable if and only if for some $ 1 < p < \infty $ and some closed ideal I of $ {A_p}(G)$, I has a bounded approximate identity. Furthermore, G is amenable if and only if every derivation of $ {A_p}(G)$ into a Banach $ {A_p}(G)$-bimodule is continuous.


References [Enhancements On Off] (What's this?)

  • [1] W. G. Badé and P. C. Curtis, Prime ideals and automatic continuity problems for Banach algebras, J. Funct. Anal. 29 (1978), 88-103. MR 499936 (80j:46077)
  • [2] C. P. Chen and P. J. Cohen, Ideals of finite codimension in commutative Banach algebras, preprint.
  • [3] M. Cowling, An application of the Littlewood-Paley theory in harmonic analysis, Math. Ann. 241 (1979), 83-86. MR 531153 (81f:43003)
  • [4] M. Cowling and P. Rodway, Restriction of certain function spaces to closed subgroups of locally compact groups, Pacific J. Math. 80 (1979), 91-104. MR 534697 (80i:43008)
  • [5] P. C. Curtis and R. J. Loy, The structure of amenable Banach algebras, J. London Math. Soc. 40 (1989), 89-104. MR 1028916 (90k:46114)
  • [6] A. Derighetti, Convoluteurs et projecteurs, Harmonic Analysis, Lecture Notes in Math., vol 1359, Springer-Verlag, Berlin and New York, 1987. MR 974311 (90g:43002)
  • [7] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236. MR 0228628 (37:4208)
  • [8] H. G. Feichtinger, C. C. Graham, and E. H. Lakien, Nonfactorization in commutative, weakly self-adjoint Banach algebras, Pacific J. Math. 80 (1979), 117-125. MR 534699 (81f:46060)
  • [9] B. E. Forrest, Amenability and derivations of the Fourier algebra, Proc. Amer. Math. Soc. 104 (1988), 437-442. MR 931730 (89c:43001)
  • [10] -, Amenability and bounded approximate identities in ideals of $ A(G)$, Illinois J. Math. 34 (1990), 1-25. MR 1031879 (92e:43003)
  • [11] -, Amenability and ideals in $ A(G)$, J. Austral. Math. Soc. (Ser. A) 53 (1992), 143-155. MR 1175708 (93i:43002)
  • [12] J. E. Gilbert, On projections of $ {L_\infty }(G)$ onto translation-invariant subspaces, Proc. London Math. Soc. 19 (1969), 69-88. MR 0244705 (39:6019)
  • [13] A. M. Gleason, A characterization of maximal ideals, J. Analyse Math. 19 (1967), 171-172. MR 0213878 (35:4732)
  • [14] C. Herz, Synthése spectrale pour les sous-groupes par rapport aux algèbres $ {A_p}$, C. R. Acad. Sci. Paris Sér. I Math. 271 (1970), 316-318. MR 0273429 (42:8307b)
  • [15] -, The theory of p-spaces with application to convolution operators, Trans. Amer. Math. Soc. 154 (1971), 69-82. MR 0272952 (42:7833)
  • [16] -, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), 91-123. MR 0355482 (50:7956)
  • [17] E. Hewitt and K. A. Ross, Abstract harmonic analysis, vol. II, Springer-Verlag, Berlin and New York, 1970. MR 551496 (81k:43001)
  • [18] B. Host, Le théorème des idempotents dans $ B(G)$, Bull. Soc. Math. France 114 (1986), 215-223. MR 860817 (88b:43003)
  • [19] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972). MR 0374934 (51:11130)
  • [20] J. P. Kahane and W. Zelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343. MR 0226408 (37:1998)
  • [21] A. T. Lau and V. Losert, Weak$ ^{\ast}$ closed complemented invariant subspaces of $ {L_\infty }(G)$ and amenable locally compact groups, Pacific J. Math. 123 (1986), 149-159. MR 834144 (87g:43001)
  • [22] T. W. Palmer, Classes of nonabelian, noncompact, locally compact groups, Rocky Mountain J. Math. 8 (1978), 683-741. MR 513952 (81j:22003)
  • [23] A. L. T. Paterson, Amenability, Amer. Math. Soc., Providence, RI, 1988.
  • [24] J. P. Pier, Amenable locally compact groups, Wiley, New York, 1984. MR 767264 (86a:43001)
  • [25] N. V. Rao, Closed ideals of finite codimension of regular self-adjoint Banach algebras, J. Funct. Anal. 82 (1989), 237-258. MR 987293 (90g:46077)
  • [26] C. R. Warner and R. Whitley, Ideals of finite codimension in $ C[0,1]$ and $ {L^1}(\mathbb{R})$, Proc. Amer. Math. Soc. 76 (1979), 263-267. MR 537085 (81b:46070)

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 43A07, 43A15, 46J99

Retrieve articles in all journals with MSC: 43A07, 43A15, 46J99


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1181182-5
Keywords: Amenable groups, Herz algebra, bounded approximate identities, ideal, automatic continuity, derivations
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society