Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



On superquadratic elliptic systems

Authors: Djairo G. de Figueiredo and Patricio L. Felmer
Journal: Trans. Amer. Math. Soc. 343 (1994), 99-116
MSC: Primary 35J50; Secondary 35J55, 35J65, 58E05
MathSciNet review: 1214781
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we study the existence of solutions for the elliptic system

\begin{displaymath}\begin{array}{*{20}{c}} { - \Delta u = \frac{{\partial H}}{{\... ...quad v = 0\quad {\text{on}}\;\partial \Omega .} \\ \end{array} \end{displaymath}

where $ \Omega $ is a bounded open subset of $ {\mathbb{R}^N}$ with smooth boundary $ \partial \Omega $, and the function $ H:{\mathbb{R}^2} \times \bar \Omega \to \mathbb{R}$, is of class $ {C^1}$. We assume the function H has a superquadratic behavior that includes a Hamiltonian of the form

$\displaystyle H(u,v) = \vert u{\vert^\alpha } + \vert v{\vert^\beta }\quad {\te... ... \frac{1}{\alpha } + \frac{1}{\beta } < 1\;{\text{with}}\;\alpha > 1,\beta > 1.$

We obtain existence of nontrivial solutions using a variational approach through a version of the Generalized Mountain Pass Theorem. Existence of positive solutions is also discussed.

References [Enhancements On Off] (What's this?)

  • [1] Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
  • [2] Vieri Benci and Paul H. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), no. 3, 241–273. MR 537061, 10.1007/BF01389883
  • [3] D. G. Costa and C. A. Magalhães. A variational approach to subquadratic perturbations of elliptic systems, Preprint.
  • [4] Ph. Clément, D. G. de Figueiredo, and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations 17 (1992), no. 5-6, 923–940. MR 1177298, 10.1080/03605309208820869
  • [5] -, Estimates of positive solutions of systems via Hardy-Sobolev inequalities, Preprint.
  • [6] Patricio L. Felmer, Periodic solutions of “superquadratic” Hamiltonian systems, J. Differential Equations 102 (1993), no. 1, 188–207. MR 1209982, 10.1006/jdeq.1993.1027
  • [7] Daisuke Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order, Proc. Japan Acad. 43 (1967), 82–86. MR 0216336
  • [8] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), no. 8, 883–901. MR 619749, 10.1080/03605308108820196
  • [9] David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190
  • [10] J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. I, Dunod, Paris, 1968.
  • [11] Arne Persson, Compact linear mappings between interpolation spaces, Ark. Mat. 5 (1964), 215–219 (1964). MR 0166598
  • [12] Paul H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 845785
  • [13] M. A. Souto, Ph.D. Thesis, UNICAMP, Brasil, 1992.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J50, 35J55, 35J65, 58E05

Retrieve articles in all journals with MSC: 35J50, 35J55, 35J65, 58E05

Additional Information

Keywords: Elliptic systems, positive solutions, variational method
Article copyright: © Copyright 1994 American Mathematical Society