Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)

 
 

 

On superquadratic elliptic systems


Authors: Djairo G. de Figueiredo and Patricio L. Felmer
Journal: Trans. Amer. Math. Soc. 343 (1994), 99-116
MSC: Primary 35J50; Secondary 35J55, 35J65, 58E05
DOI: https://doi.org/10.1090/S0002-9947-1994-1214781-2
MathSciNet review: 1214781
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this article we study the existence of solutions for the elliptic system

\begin{displaymath}\begin{array}{*{20}{c}} { - \Delta u = \frac{{\partial H}}{{\... ...quad v = 0\quad {\text{on}}\;\partial \Omega .} \\ \end{array} \end{displaymath}

where $ \Omega $ is a bounded open subset of $ {\mathbb{R}^N}$ with smooth boundary $ \partial \Omega $, and the function $ H:{\mathbb{R}^2} \times \bar \Omega \to \mathbb{R}$, is of class $ {C^1}$. We assume the function H has a superquadratic behavior that includes a Hamiltonian of the form

$\displaystyle H(u,v) = \vert u{\vert^\alpha } + \vert v{\vert^\beta }\quad {\te... ... \frac{1}{\alpha } + \frac{1}{\beta } < 1\;{\text{with}}\;\alpha > 1,\beta > 1.$

We obtain existence of nontrivial solutions using a variational approach through a version of the Generalized Mountain Pass Theorem. Existence of positive solutions is also discussed.

References [Enhancements On Off] (What's this?)

  • [1] R. A. Adams, Sobolev spaces, Academic Press, 1975. MR 0450957 (56:9247)
  • [2] V. Benci and P. Rabinowitz, Critical point theorems for indefinite functionals, Invent. Math. 52 (1979), 241-273. MR 537061 (80i:58019)
  • [3] D. G. Costa and C. A. Magalhães. A variational approach to subquadratic perturbations of elliptic systems, Preprint.
  • [4] Ph. Clément, D. G. de Figueiredo and E. Mitidieri, Positive solutions of semilinear elliptic systems, Comm. Partial Differential Equations 17 (1992), 923-940. MR 1177298 (93i:35054)
  • [5] -, Estimates of positive solutions of systems via Hardy-Sobolev inequalities, Preprint.
  • [6] P. Felmer, Periodic solutions of'superquadratic' Hamiltonian systems, J. Differential Equations 102 (1993), 188-207. MR 1209982 (94c:58160)
  • [7] D. Fujiwara, Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order, Proc. Japan Acad. 43 (1967). MR 0216336 (35:7170)
  • [8] B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations 6 (1981), 883-901. MR 619749 (82h:35033)
  • [9] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, Berlin, 1983. MR 737190 (86c:35035)
  • [10] J. L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. I, Dunod, Paris, 1968.
  • [11] A. Persson, Compact linear mappings between interpolation spaces, Ark. Mat. 5 (1964), 215-219. MR 0166598 (29:3871)
  • [12] P. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conf. Ser. in Math., no. 65, Amer. Math. Soc., Providence, R.I., 1986. MR 845785 (87j:58024)
  • [13] M. A. Souto, Ph.D. Thesis, UNICAMP, Brasil, 1992.

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC: 35J50, 35J55, 35J65, 58E05

Retrieve articles in all journals with MSC: 35J50, 35J55, 35J65, 58E05


Additional Information

DOI: https://doi.org/10.1090/S0002-9947-1994-1214781-2
Keywords: Elliptic systems, positive solutions, variational method
Article copyright: © Copyright 1994 American Mathematical Society

American Mathematical Society